ترغب بنشر مسار تعليمي؟ اضغط هنا

X-shooter observations of main sequence stars in the globular cluster NGC 2808: first chemical tagging of a He-normal and a He-rich dwarf

132   0   0.0 ( 0 )
 نشر من قبل Angela Bragaglia
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English
 تأليف A. Bragaglia




اسأل ChatGPT حول البحث

We present the first chemical composition study of two unevolved stars in the globular cluster NGC 2808, obtained with the spectrograph X-shooter@VLT. NGC 2808 shows three discrete, well separated main sequences. The most accepted explanation for this phenomenon is that their stars have different helium contents. We observed one star on the bluest main sequence, (bMS, claimed to have high helium content, Y~0.4), and one on the reddest main sequence (rMS, consistent with a canonical helium content, Y=0.245). We analyzed features of NH, CH, Na, Mg, Al, and Fe. While Fe, Ca, and other elements have the same abundances in the two stars, the bMS star shows a huge enhancement of N, a depletion of C, an enhancement of Na and Al, and small depletion of Mg with respect to the rMS star. This is exactly what is expected if stars on the bMS formed from the ejecta produced by an earlier stellar generation in the complete CNO and MgAl cycles whose main product is helium. The elemental abundance pattern differences in these two stars are consistent with the differences in helium content suggested by the color-magnitude diagram positions of the stars.



قيم البحث

اقرأ أيضاً

In this study, we identified and characterized the hot and luminous UV-bright stars in the globular cluster NGC 2808. We combined data from the Ultra Violet Imaging Telescope (UVIT) on-board the Indian space satellite, AstroSat, with the Hubble Space Telescope UV Globular Cluster Survey (HUGS) data for the central region (within $sim$ $ang[angle-symbol-over-decimal]{;2.7;} times ang[angle-symbol-over-decimal]{;2.7;}$) and Gaia and ground-based optical photometry for the outer parts of the cluster. We constructed the UV and UV-optical color-magnitude diagrams, compared the horizontal branch (HB) members with the theoretical zero-age HB and terminal-age HB models and identified 34 UV-bright stars. The spectral energy distributions of the UV-bright stars were fitted with theoretical models to estimate their effective temperatures (12500 K - 100,000 K), radii (0.13 to 2.2 $R_{odot}$), and luminosities ($sim 40$ to $3000$ $L_{odot}$) for the first time. These stars were then placed on the H-R diagram, along with theoretical post-HB (pHB) evolutionary tracks to assess their evolutionary status. The models suggest that most of these stars are in the AGB-manque phase and all, except three, have evolutionary masses $<$ 0.53 $M_{odot}$. We also calculated the theoretically expected number of hot post-(early)-AGB (p(e)AGB) stars in this cluster and found the range to match our observations. Seven UV-bright stars located in the outer region of the cluster, identified from the AstroSat/UVIT images, are ideal candidates for detailed follow-up spectroscopic studies.
The spectroscopic and photometric signals of the star-to-star abundance variations found in globular clusters seem to be correlated with global parameters like the clusters metallicity, mass and age. Understanding this behaviour could bring us closer to the origin of these intriguing abundance spreads. In this work we use deep HST photometry to look for evidence of abundance variations in the main sequence of a young massive cluster NGC 419 ($sim10^5$ M$_{odot}$, $sim1.4$ Gyr). Unlike previous studies, here we focus on stars in the same mass range found in old globulars ($sim0.75-1$ M$_{odot}$), where light elements variations are detected. We find no evidence for N abundance variations among these stars in the $Un-B$ and $U-B$ CMD of NGC 419. This is at odds with the N-variations found in old globulars like 47 Tuc, NGC 6352 and NGC 6637 with similar metallicity to NGC 419. Although the signature of the abundance variations characteristic of old globulars appears to be significantly smaller or absent in this young cluster, we cannot conclude if this effect is mainly driven by its age or its mass.
477 - Eugenio Carretta 2014
We present the abundances of N in a sample of 62 stars on the red giant branch (RGB) in the peculiar globular cluster NGC 1851. The values of [N/Fe] ratio were obtained by comparing the flux measured in the observed spectra with that from synthetic s pectra for up to about 15 features of CN. This is the first time that N abundances are obtained for such a large sample of RGB stars from medium-resolution spectroscopy in this cluster. With these abundances we provide a chemical tagging of the split red giant branch found from several studies in NGC 1851. The secondary, reddest sequence on the RGB is populated almost exclusively by N-rich stars, confirming our previous suggestion based on Stromgren magnitudes and colours. These giants are also, on average, enriched in s-process elements such as Ba, and are likely the results of pollution from low mass stars that experienced episodes of third dredge-up in the asymptotic giant branch phase.
156 - Eugenio Carretta 2012
We present aluminium, magnesium, and silicon abundances in the metal-poor globular cluster NGC 6752 for a sample of more than 130 red giants with homogeneous oxygen and sodium abundances. We find that [Al/Fe] shows a spread of about 1.4 dex among gia nts in NGC 6752 and is anticorrelated with [Mg/Fe] and [O/Fe] and correlated with [Na/Fe] and [Si/Fe]. These relations are not continuous in nature, but the distribution of stars is clearly clustered around three distinct Al values, low, intermediate, and high. These three groups nicely correspond to the three distinct sequences previously detected using Stromgren photometry along the red giant branch. These two independent findings strongly indicate the existence of three distinct stellar populations in NGC 6752. Comparing the abundances of O and Mg, we find that the population with intermediate chemical abundances cannot originate from material with the same composition of the most O- and Mg-poor population, diluted by material with that of the most O- and Mg-rich one. This calls for different polluters.
103 - A. Sanna , A. Papitto , L. Burderi 2016
We report on the discovery of coherent pulsations at a period of 2.9 ms from the X-ray transient MAXI J0911-655 in the globular cluster NGC 2808. We observed X-ray pulsations at a frequency of $sim339.97$ Hz in three different observations of the sou rce performed with XMM-Newton and NuSTAR during the source outburst. This newly discovered accreting millisecond pulsar is part of an ultra-compact binary system characterised by an orbital period of $44.3$ minutes and a projected semi-major axis of $sim17.6$ lt-ms. Based on the mass function we estimate a minimum companion mass of 0.024 M$_{odot}$, which assumes a neutron star mass of 1.4 M$_{odot}$ and a maximum inclination angle of $75^{circ}$ (derived from the lack of eclipses and dips in the light-curve of the source). We find that the companion stars Roche-Lobe could either be filled by a hot ($5times 10^{6}$ K) pure helium white dwarf with a 0.028 M$_{odot}$ mass (implying $isimeq58^{circ}$) or an old (>5 Gyr) brown dwarf with metallicity abundances between solar/sub-solar and mass ranging in the interval 0.065$-$0.085 M$_{odot}$ (16 < $i$ < 21). During the outburst the broad-band energy spectra are well described by a superposition of a weak black-body component (kT$sim$ 0.5 keV) and a hard cutoff power-law with photon index $Gamma sim$ 1.7 and cut-off at a temperature kT$_esim$ 130 keV. Up to the latest Swift-XRT observation performed on 2016 July 19 the source has been observed in outburst for almost 150 days, which makes MAXI J0911-655 the second accreting millisecond X-ray pulsar with outburst duration longer than 100 days.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا