ترغب بنشر مسار تعليمي؟ اضغط هنا

Comments to support the Dipole Dynamical Model (DDM) of Ball Lightning (BL)

95   0   0.0 ( 0 )
 نشر من قبل Viktor Soshnikov
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English
 تأليف V. N. Soshnikov




اسأل ChatGPT حول البحث

I present estimates to justify previously proposed by me heuristic Dipole Dynamical Model (DDM) of Ball Lightning (BL). The movement and energy supplying to the dipole BL are due to the atmospheric electric field. Crucial for the detailed analysis of BL is using the new relation of balance of the force of atmospheric electric field (per unit mass of electron cloud) and dipole forces electrons-ions within BL dipole (per unit mass of BL) as the first necessary condition for the existance of BL as an integer. This model is unique because, unlike existing static models, fundamental condition for the existence of Ball Lightning is its forward motion. The virial theorem limiting BL power does not apply to BL which is not closed system like the Sun or Galaxy systems and is strongly dependent part of the infinitely extended in time and space large system. Stability of BL is due to two free parameters with the fundamental role of thermodynamic non-equilibrium, ionization, recombination and translational movement with energy loss by radiation and also excess volumetric positive charge. Stability of BL is not related to the presence of any external shells. Polarization degree of BL plasma is characterized by polarizability factor {gamma}. An example is presented of calculating the stability of an option of BL. There is also a possible connection of stability BL with statistical distributions of the atmospheric electric field in time and space. Destruction of BL can also occur due to arising kinematical instability at its accelerating (or decelerating) movement. Maximal energy density in BL DDM does not exceed the value Espec<(10(8) - 10(9)) J/m(3) decreasing with the growing BL radius. Resulting indefinitely long BL lifetime is also discussed. BL has no outer shell and no any inner rigid or elastic microstructure elements.



قيم البحث

اقرأ أيضاً

In this paper we describe a video-camera recording of a (probable) ball lightning event and both the related image and signal analyses for its photometric and dynamical characterization. The results strongly support the BL nature of the recorded lumi nous ball object and allow the researchers to have an objective and unique video document of a possible BL event for further analyses. Some general evaluations of the obtained results considering the proposed ball lightning models conclude the paper.
436 - V. N. Soshnikov 2009
The nature of ball lightning (BL) is pure electric and can be described by simple equations following to elementary considerations of equality of translational acceleration and velocity of the ions and electrons, a spherical-like dipole BL as a whole and balance of the energy influx of atmospheric electricity and radiation losses. From these equations follows a linear relationship between the size of BL and the tension of the atmospheric field E. A typical size of the fireball (FB) r ~ 5 cm corresponds to the calculated electron temperature T(e) ~ 8000K at a pressure p = 1 at with a horizontal component of the electric field E a few kV/cm. I estimate the energy of BL and characterize the conditions of its possible experimental generation. The estimation is given of the surface tension of BL. The possibility of the hot and the most realistic thermodynamic non-equilibrium cold BL is discussed. Here we presented preliminary evaluations preceding the more detailed work in Arxiv.org [11].
108 - Vladan Pankovic 2010
In this work we suggest (in a formal analogy with Linde chaotic inflation scenario) simple dynamical model of the dark energy or cosmological constant. Concretely, we suggest a Lagrangian dependent of Universe scale factor and scalar field (with cons tant and positive total energy density as cosmological constant). Then, Euler-Lagrange equation for Universe scale factor is equivalent to the second Friedman equation for the flat empty space with cosmological constant (in this sense our model is full agreement with recent astronomical observations). Also there is Euler-Lagrange equation for scalar field that includes additional friction term and negative first partial derivative of unknown potential energy density (this equation is, in some way, similar to Klein-Gordon equation modified for cosmic expansion in Linde chaotic inflation scenario). Finally, total time derivative of the (constant) scalar field total energy density must be zero. It implies third dynamical equation which is equivalent to usual Euler-Lagrange equation with positive partial derivative of unknown potential energy density (this equation is formally exactly equivalent to corresponding equation in static Universe). Last two equations admit simple exact determination of scalar field and potential energy density, while cosmological constant stands a free parameter. Potential energy density represents a square function of scalar field with unique maximum (dynamically non-stable point). Any initial scalar field tends (co-exponentially) during time toward the same final scalar field, argument of the maximum of the potential energy density. It admits a possibility that final dynamically non-stable scalar field value turns out spontaneously in any other scalar field value when all begins again (like Sisyphus boulder motion).
66 - Karl D. Stephan 2016
After centuries, the long-standing problem of the nature of ball lightning may be closer to a solution. The relativistic-microwave theory of ball lightning recently proposed by Wu accounts for many of the leading characteristics of ball lightning, wh ich most previous theories have failed to do. It involves the impact of a lightning-caused relativistic electron bunch to soil, producing an EM pulse that forms a plasma bubble. While the theory presents a plausible account of ball-lightning formation, storing electromagnetic energy long enough to account for the observed lifetime of such objects was not demonstrated. Here we show how such a structure can develop the high Q factor (~10^10) needed for the observed lifetimes of ~seconds for ball lightning, and show that the structure is radially stable, given certain assumptions.
113 - Zotin K.-H. Chu 2009
We make remarks on Sofos {it et al.}s [{it Phys. Rev. E} 79, 026305 (2009)] paper. The focus is about the monotonicity of the slip length of which it is different from previous similar numerical simulation. We also offer a possible explanation for this.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا