ترغب بنشر مسار تعليمي؟ اضغط هنا

Closedness type regularity conditions for surjectivity results involving the sum of two maximal monotone operators

157   0   0.0 ( 0 )
 نشر من قبل Sorin-MIhai Grad
 تاريخ النشر 2010
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In this note we provide regularity conditions of closedness type which guarantee some surjectivity results concerning the sum of two maximal monotone operators by using representative functions. The first regularity condition we give guarantees the surjectivity of the monotone operator $S(cdot + p)+T(cdot)$, where $pin X$ and $S$ and $T$ are maximal monotone operators on the reflexive Banach space $X$. Then, this is used to obtain sufficient conditions for the surjectivity of $S+T$ and for the situation when $0$ belongs to the range of $S+T$. Several special cases are discussed, some of them delivering interesting byproducts.



قيم البحث

اقرأ أيضاً

We are concerned with surjectivity of perturbations of maximal monotone operators in non-reflexive Banach spaces. While in a reflexive setting, a classical surjectivity result due to Rockafellar gives a necessary and sufficient condition to maximal m onotonicity, in a non-reflexive space we characterize maximality using a ``enlarged version of the duality mapping, introduced previously by Gossez.
In a recent paper in Journal of Convex Analysis the authors studied, in non-reflexive Banach spaces, a class of maximal monotone operators, characterized by the existence of a function in Fitzpatricks family of the operator which conjugate is above t he duality product. This property was used to prove that such operators satisfies a restricted version of Brondsted-Rockafellar property. In this work we will prove that if a single Fitzpatrick function of a maximal monotone operator has a conjugate above the duality product, then all Fitzpatrick function of the operator have a conjugate above the duality product. As a consequence, the family of maximal monotone operators with this property is just the class NI, previously defined and studied by Simons. We will also prove that an auxiliary condition used by the authors to prove the restricted Brondsted-Rockafellar property is equivalent to the assumption of the conjugate of the Fitzpatrick function to majorize the duality product.
In this work, we study fixed point algorithms for finding a zero in the sum of $ngeq 2$ maximally monotone operators by using their resolvents. More precisely, we consider the class of such algorithms where each resolvent is evaluated only once per i teration. For any algorithm from this class, we show that the underlying fixed point operator is necessarily defined on a $d$-fold Cartesian product space with $dgeq n-1$. Further, we show that this bound is unimprovable by providing a family of examples for which $d=n-1$ is attained. This family includes the Douglas-Rachford algorithm as the special case when $n=2$. Applications of the new family of algorithms in distributed decentralised optimisation and multi-block extensions of the alternation direction method of multipliers (ADMM) are discussed.
We provide an approach to maximal monotone bifunctions based on the theory of representative functions. Thus we extend to nonreflexive Banach spaces recent results due to A.N. Iusem and, respectively, N. Hadjisavvas and H. Khatibzadeh, where sufficie nt conditions guaranteeing the maximal monotonicity of bifunctions were introduced. New results involving the sum of two monotone bifunctions are also presented.
We present a new sufficient condition under which a maximal monotone operator $T:Xtos X^*$ admits a unique maximal monotone extension to the bidual $widetilde T:X^{**} rightrightarrows X^*$. For non-linear operators this condition is equivalent to un iqueness of the extension. The class of maximal monotone operators which satisfy this new condition includes class of Gossez type D maximal monotone operators, previously defined and studied by J.-P. Gossez, and all maximal monotone operators of this new class satisfies a restricted version of Brondsted-Rockafellar condition. The central tool in our approach is the $mathcal{S}$-function defined and studied by Burachik and Svaiter in 2000 cite{BuSvSet02}(submission date, July 2000). For a generic operator, this function is the supremum of all convex lower semicontinuous functions which are majorized by the duality product in the graph of the operator. We also prove in this work that if the graph of a maximal monotone operator is convex, then this graph is an affine linear subspace.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا