ﻻ يوجد ملخص باللغة العربية
In this note we provide regularity conditions of closedness type which guarantee some surjectivity results concerning the sum of two maximal monotone operators by using representative functions. The first regularity condition we give guarantees the surjectivity of the monotone operator $S(cdot + p)+T(cdot)$, where $pin X$ and $S$ and $T$ are maximal monotone operators on the reflexive Banach space $X$. Then, this is used to obtain sufficient conditions for the surjectivity of $S+T$ and for the situation when $0$ belongs to the range of $S+T$. Several special cases are discussed, some of them delivering interesting byproducts.
We are concerned with surjectivity of perturbations of maximal monotone operators in non-reflexive Banach spaces. While in a reflexive setting, a classical surjectivity result due to Rockafellar gives a necessary and sufficient condition to maximal m
In a recent paper in Journal of Convex Analysis the authors studied, in non-reflexive Banach spaces, a class of maximal monotone operators, characterized by the existence of a function in Fitzpatricks family of the operator which conjugate is above t
In this work, we study fixed point algorithms for finding a zero in the sum of $ngeq 2$ maximally monotone operators by using their resolvents. More precisely, we consider the class of such algorithms where each resolvent is evaluated only once per i
We provide an approach to maximal monotone bifunctions based on the theory of representative functions. Thus we extend to nonreflexive Banach spaces recent results due to A.N. Iusem and, respectively, N. Hadjisavvas and H. Khatibzadeh, where sufficie
We present a new sufficient condition under which a maximal monotone operator $T:Xtos X^*$ admits a unique maximal monotone extension to the bidual $widetilde T:X^{**} rightrightarrows X^*$. For non-linear operators this condition is equivalent to un