ﻻ يوجد ملخص باللغة العربية
We demonstrate a fast spin-s spherical harmonic transform algorithm, which is flexible and exact for band-limited functions. In contrast to previous work, where spin transforms are computed independently, our algorithm permits the computation of several distinct spin transforms simultaneously. Specifically, only one set of special functions is computed for transforms of quantities with any spin, namely the Wigner d-matrices evaluated at {pi}/2, which may be computed with efficient recursions. For any spin the computation scales as O(L^3) where L is the band-limit of the function. Our publicly available numerical implementation permits very high accuracy at modest computational cost. We discuss applications to the Cosmic Microwave Background (CMB) and gravitational lensing.
A fast and exact algorithm is developed for the spin +-2 spherical harmonics transforms on equi-angular pixelizations on the sphere. It is based on the Driscoll and Healy fast scalar spherical harmonics transform. The theoretical exactness of the tra
We propose a transform for signals defined on the sphere that reveals their localized directional content in the spatio-spectral domain when used in conjunction with an asymmetric window function. We call this transform the directional spatially loca
We have developed a digital fast Fourier transform (FFT) spectrometer made of an analog-to-digital converter (ADC) and a field-programmable gate array (FPGA). The base instrument has independent ADC and FPGA modules, which allow us to implement diffe
I present an exact and explicit solution to the scalar (Stokes flux intensity) radio interferometer imaging equation on a spherical surface which is valid also for non-coplanar interferometer configurations. This imaging equation is comparable to $w$
The ITRF coordinates of the spherical center of the Five-hundred-meter Aperture Spherical radio Telescope (FAST) are $(X,Y,Z)=(-1668557.2070983793,$ $5506838.5266271923, 2744934.9655897617)$.