ﻻ يوجد ملخص باللغة العربية
In recent years a very exciting and intense activity has been devoted to the understanding and construction of materials that enjoy exotic optical properties, such as a negative refractive index. Motivated by these experimental and theoretical developments, we use the string-inspired idea of holography to study the electromagnetic response of a certain class of media: strongly coupled relativistic systems that admit a dual gravitational description. Our results indicate that this type of media generally have a negative refractive index. Moreover we observe that a negative refractive index could be a common feature of relativistic hydrodynamic systems at low frequencies.
Which systems are ideal to obtain negative refraction with no absorption? Electromagnetically induced transparency (EIT) is a method to suppress absorption and make a material transparent to a field of a given frequency. Such a system has been discus
We consider the extension of optical meta-materials to matter waves. We show that the generic property of pulsed comoving magnetic fields allows us to fashion the wave-number dependence of the atomic phase shift. It can be used to produce a transient
We study the phenomenon of additional light waves (ALWs), observed in crystal optics: two or more electromagnetic waves with the same polarization, but different refractive index, propagate simultaneously in a isotropic medium. We show that ALWs are
We demonstrate numerically and experimentally a conjugated gammadion chiral metamaterial that uniaxially exhibits huge optical activity and circular dichroism, and gives a negative refractive index. This chiral design provides smaller unit cell size
Recently it has been proposed that a planar slab of material, for which both the permittivity and permeability have the values of -1, could bring not only the propagating fields associated with a source to a focus, but could also refocus the nonpropa