ترغب بنشر مسار تعليمي؟ اضغط هنا

Fluorescence of laser created electron-hole plasma in graphene

201   0   0.0 ( 0 )
 نشر من قبل Rainer Stoehr
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present an experimental observation of non-linear up- and down-converted optical luminescence of graphene and thin graphite subject to picosecond infrared laser pulses. We show that the excitation yields to a high density electron-hole plasma in graphene. It is further shown that the excited charge carries can efficiently exchange energy due to scattering in momentum space. The recombination of the resulting non-equilibrium electron-hole pairs yields to the observed white light luminescence. Due to the scattering mechanism the power dependence of the luminescence is quadratic until it saturates for higher laser power. Studying the luminescence intensity as a function of layer thickness gives further insight into its nature and provides a new tool for substrate independent thickness determination of multilayer flakes.



قيم البحث

اقرأ أيضاً

Multiexcitons in monolayer WSe2 exhibit a suite of optoelectronic phenomena that are unique to those of their single exciton constituents. Here, photoluminescence action spectroscopy shows that multiexciton formation is enhanced with increasing optic al excitation energy. This enhancement is attributed to the multiexciton formation processes from an electron-hole plasma and results in over 300% more multiexciton emission than at lower excitation energies at 4 K. The energetic onset of the enhancement coincides with the quasiparticle bandgap, corroborating the role of the electron-hole plasma, and the enhancement diminishes with increasing temperature. The results reveal that the strong interactions responsible for ultrafast exciton formation also affect multiexciton phenomena, and both multiexciton and single exciton states play significant roles in plasma thermalization in 2D semiconductors.
274 - A. Kretinin , G. L. Yu , R. Jalil 2013
The next-nearest neighbor hopping term t determines a magnitude and, hence, importance of several phenomena in graphene, which include self-doping due to broken bonds and the Klein tunneling that in the presence of t is no longer perfect. Theoretical estimates for t vary widely whereas a few existing measurements by using polarization resolved magneto-spectroscopy have found surprisingly large t, close or even exceeding highest theoretical values. Here we report dedicated measurements of the density of states in graphene by using high-quality capacitance devices. The density of states exhibits a pronounced electron-hole asymmetry that increases linearly with energy. This behavior yields t approx -0.30 eV +-15%, in agreement with the high end of theory estimates. We discuss the role of electron-electron interactions in determining t and overview phenomena which can be influenced by such a large value of t.
87 - A. Amo , M. D. Martin , L. Vina 2005
We present a systematic study of the exciton/electron-hole plasma photoluminescence dynamics in bulk GaAs for various lattice temperatures and excitation densities. The competition between the exciton and electron-hole pair recombination dominates th e onset of the luminescence. We show that the metal-to-insulator transition, induced by temperature and/or excitation density, can be directly monitored by the carrier dynamics and the time-resolved spectral characteristics of the light emission. The dependence on carrier density of the photoluminescence rise time is strongly modified around a lattice temperature of 49 K, corresponding to the exciton binding energy (4.2 meV). In a similar way, the rise-time dependence on lattice temperature undergoes a relatively abrupt change at an excitation density of 120-180x10^15 cm^-3, which is about five times greater than the calculated Mott density in GaAs taking into account many body corrections.
We use a tight-binding model and the random-phase approximation to study the Coulomb excitations in simple-hexagonal-stacking multilayer graphene and discuss the field effects. The calculation results include the energy bands, the response functions, and the plasmon dispersions. A perpendicular electric field is predicted to induce significant charge transfer and thus capable of manipulating the energy, intensity, and the number of plasmon modes. This could be further validated by inelastic light scattering or electron-energy-loss spectroscopy.
We propose a hydrodynamic model describing steady-state and dynamic electron and hole transport properties of graphene structures which accounts for the features of the electron and hole spectra. It is intended for electron-hole plasma in graphene ch aracterized by high rate of intercarrier scattering compared to external scattering (on phonons and impurities), i.e., for intrinsic or optically pumped (bipolar plasma), and gated graphene (virtually monopolar plasma). We demonstrate that the effect of strong interaction of electrons and holes on their transport can be treated as a viscous friction between the electron and hole components. We apply the developed model for the calculations of the graphene dc conductivity, in particular, the effect of mutual drag of electrons and holes is described. The spectra and damping of collective excitations in graphene in the bipolar and monopolar limits are found. It is shown that at high gate voltages and, hence, at high electron and low hole densities (or vice-versa), the excitations are associated with the self-consistent electric field and the hydrodynamic pressure (plasma waves). In intrinsic and optically pumped graphene, the waves constitute quasineutral perturbations of the electron and hole densities (electron-hole sound waves) with the velocity being dependent only on the fundamental graphene constants.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا