ﻻ يوجد ملخص باللغة العربية
The spectral energy distribution of galaxies is a complex function of the star formation history and geometrical arrangement of stars and gas in galaxies. The computation of the radiative transfer of stellar radiation through the dust distribution is time-consuming. This aspect becomes unacceptable in particular when dealing with the predictions by semi-analytical galaxy formation models populating cosmological volumes, to be then compared with multi-wavelength surveys. Mainly for this aim, we have implemented an artificial neural network algorithm into the spectro-photometric and radiative transfer code GRASIL in order to compute the spectral energy distribution of galaxies in a short computing time. This allows to avoid the adoption of empirical templates that may have nothing to do with the mock galaxies output by models. The ANN has been implemented to compute the dust emission spectrum (the bottleneck of the computation), and separately for the star-forming molecular clouds and the diffuse dust (due to their different properties and dependencies). We have defined the input neurons effectively determining their emission, which means this implementation has a general applicability and is not linked to a particular galaxy formation model. We have trained the net for the disc and spherical geometries, and tested its performance to reproduce the SED of disc and starburst galaxies, as well as for a semi-analytical model for spheroidal galaxies. We have checked that for this model both the SEDs and the galaxy counts in the Herschel bands obtained with the ANN approximation are almost superimposed to the same quantities obtained with the full GRASIL. We conclude that this method appears robust and advantageous, and will present the application to a more complex SAM in another paper.
We have acquired radio continuum data between 70,MHz and 48,GHz for a sample of 19 southern starburst galaxies at moderate redshifts ($0.067 < z < 0.227$) with the aim of separating synchrotron and free-free emission components. Using a Bayesian fram
We develop a broadband spectral model, agnsli}, to describe super-Eddington black hole accretion disc spectra. This is based on the slim disc emissivity, where radial advection keeps the surface luminosity at the local Eddington limit, resulting in L
The relationship between star formation and super-massive black hole growth is central to our understanding of galaxy formation and evolution. Hyper-Luminous Infrared Galaxies (HLIRGs) are unique laboratories to investigate the connection between sta
We present new calculations of the attenuation of stellar light from spiral galaxies using geometries for stars and dust which can reproduce the entire spectral energy distribution from the UV to the FIR/submm and can also account for the surface bri
We are constructing the broadband SED catalog of the MOJAVE sample from the radio to the gamma-ray band using MOJAVE, Swift UVOT/XRT/BAT, and Fermi/LAT data, in order to understand the emission mechanism of extragalactic outflows and to investigate t