ﻻ يوجد ملخص باللغة العربية
In this article, we present a new approach to averaging in non-Hamiltonian systems with periodic forcing. The results here do not depend on the existence of a small parameter. In fact, we show that our averaging method fits into an appropriate nonlinear equivalence problem, and that this problem can be solved formally by using the Lie transform framework to linearize it. According to this approach, we derive formal coordinate transformations associated with both first-order and higher-order averaging, which result in more manageable formulae than the classical ones. Using these transformations, it is possible to correct the solution of an averaged system by recovering the oscillatory components of the original non-averaged system. In this framework, the inverse transformations are also defined explicitly by formal series; they allow the estimation of appropriate initial data for each higher-order averaged system, respecting the equivalence relation. Finally, we show how these methods can be used for identifying and computing periodic solutions for a very large class of nonlinear systems with time-periodic forcing. We test the validity of our approach by analyzing both the first-order and the second-order averaged system for a problem in atmospheric chemistry.
We make two observations on the motion of coupled particles in a periodic potential. Coupled pendula, or the space-discretized sine-Gordon equation is an example of this problem. Linearized spectrum of the synchronous motion turns out to have a hidde
We present the modified approach to the classical Bogolyubov-Krylov averaging, developed recently for the purpose of PDEs. It allows to treat Lipschitz perturbations of linear systems with pure imaginary spectrum and may be generalized to treat PDEs with small nonlinearities.
M. Kruskal showed that each nearly-periodic dynamical system admits a formal $U(1)$ symmetry, generated by the so-called roto-rate. We prove that such systems also admit nearly-invariant manifolds of each order, near which rapid oscillations are supp
In this article we develop an analogue of Aubry Mather theory for time periodic dissipative equation [ left{ begin{aligned} dot x&=partial_p H(x,p,t), dot p&=-partial_x H(x,p,t)-f(t)p end{aligned} right. ] with $(x,p,t)in T^*Mtimesmathbb T$ (compact
We introduce an algebraic method to study local stability in the Newtonian $n$-body problem when certain symmetries are present. We use representation theory of groups to simplify the calculations of certain eigenvalue problems. The method should be