ترغب بنشر مسار تعليمي؟ اضغط هنا

Parameterized viscosity solutions of convex Hamiltonian systems with time periodic damping

92   0   0.0 ( 0 )
 نشر من قبل Zhang Jianlu
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In this article we develop an analogue of Aubry Mather theory for time periodic dissipative equation [ left{ begin{aligned} dot x&=partial_p H(x,p,t), dot p&=-partial_x H(x,p,t)-f(t)p end{aligned} right. ] with $(x,p,t)in T^*Mtimesmathbb T$ (compact manifold $M$ without boundary). We discuss the asymptotic behaviors of viscosity solutions of associated Hamilton-Jacobi equation [ partial_t u+f(t)u+H(x,partial_x u,t)=0,quad(x,t)in Mtimesmathbb T ] w.r.t. certain parameters, and analyze the meanings in controlling the global dynamics. We also discuss the prospect of applying our conclusions to many physical models.



قيم البحث

اقرأ أيضاً

103 - Mengyu Cheng , Zhenxin Liu 2019
In this paper, we use the variational approach to investigate recurrent properties of solutions for stochastic partial differential equations, which is in contrast to the previous semigroup framework. Consider stochastic differential equations with m onotone coefficients. Firstly, we establish the continuous dependence on initial values and coefficients for solutions. Secondly, we prove the existence of recurrent solutions, which include periodic, almost periodic and almost automorphic solutions. Then we show that these recurrent solutions are globally asymptotically stable in square-mean sense. Finally, for illustration of our results we give two applications, i.e. stochastic reaction diffusion equations and stochastic porous media equations.
138 - Jinxin Xue 2014
In this paper, we show the existence of non contractible periodic orbits in Hamiltonian systems defined on $T^*T^n$ separating two Lagrangian tori under certain cone assumption. Our result answers a question of Polterovich in cite{P} in a sharp way. As an application, we find periodic orbits of almost all the homotopy types on a dense set of energy level in Lorentzian type mechanical Hamiltonian systems defined on $T^*T^2$. This solves a problem of Arnold in cite{A}.
147 - Bixiang Wang 2013
In this paper, we study the existence, stability and bifurcation of random complete and periodic solutions for stochastic parabolic equations with multiplicative noise. We first prove the existence and uniqueness of tempered random attractors for the stochastic equations and characterize the structures of the attractors by random complete solutions. We then examine the existence and stability of random complete quasi-solutions and establish the relations of these solutions and the structures of tempered attractors. When the stochastic equations are incorporated with periodic forcing, we obtain the existence and stability of random periodic solutions. For the stochastic Chafee-Infante equation, we further establish the multiplicity and stochastic bifurcation of complete and periodic solutions.
M. Kruskal showed that each nearly-periodic dynamical system admits a formal $U(1)$ symmetry, generated by the so-called roto-rate. We prove that such systems also admit nearly-invariant manifolds of each order, near which rapid oscillations are supp ressed. We study the nonlinear normal stability of these slow manifolds for nearly-periodic Hamiltonian systems on barely symplectic manifolds -- manifolds equipped with closed, non-degenerate $2$-forms that may be degenerate to leading order. In particular, we establish a sufficient condition for long-term normal stability based on second derivatives of the well-known adiabatic invariant. We use these results to investigate the problem of embedding guiding center dynamics of a magnetized charged particle as a slow manifold in a nearly-periodic system. We prove that one previous embedding, and two new embeddings enjoy long-term normal stability, and thereby strengthen the theoretical justification for these models.
Quasi-periodic solutions with Liouvillean frequency of forced nonlinear Schrodinger equation are constructed. This is based on an infinite dimensional KAM theory for Liouvillean frequency.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا