ﻻ يوجد ملخص باللغة العربية
Sector decomposition in its practical aspect is a constructive method used to evaluate Feynman integrals numerically. We present a new program performing the sector decomposition and integrating the expression afterwards. The program can be also used in order to expand Feynman integrals automatically in limits of momenta and masses with the use of sector decompositions and Mellin--Barnes representations. The program is parallelizable on modern multicore computers and even on multiple computers. Also we demonstrate some new numerical results for four-loop massless propagator master integrals.
The program FIESTA has been completely rewritten. Now it can be used not only as a tool to evaluate Feynman integrals numerically, but also to expand Feynman integrals automatically in limits of momenta and masses with the use of sector decomposition
Up to the moment there are two known algorithms of sector decomposition: an original private algorithm of Binoth and Heinrich and an algorithm made public lastyear by Bogner and Weinzierl. We present a new program performing the sector decomposition
We review the basic theory of the parton pseudodistributions approach and its applications to lattice extractions of parton distribution functions. The crucial idea of the approach is the realization that the correlator $M(z,p)$ of the parton fields
Euclidean Signed Distance Field (ESDF) is useful for online motion planning of aerial robots since it can easily query the distance and gradient information against obstacles. Fast incrementally built ESDF map is the bottleneck for conducting real-ti
We explore the complete cross-section for the production of unpolarized hadrons in semi-inclusive deep-inelastic scattering up to power-suppressed $mathcal{O}(1/Q^2)$ terms in the Wandzura-Wilczek-type (WW-type) approximation, which consists in syste