ترغب بنشر مسار تعليمي؟ اضغط هنا

Splitting of the ground state manifold of classical Heisenberg spins as couplings are varied

110   0   0.0 ( 0 )
 نشر من قبل Samarth Chandra
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Samarth Chandra




اسأل ChatGPT حول البحث

We construct clusters of classical Heisenberg spins with two-spin $vec{S}_i.vec{S}_j$-type interactions for which the ground state manifold consists of disconnected pieces. We extend the construction to lattices and couplings for which the ground state manifold splits into an exponentially large number of disconnected pieces at a sharp point as the interaction strengths are varied with respect to each other. In one such lattice we construct, the number of disconnected pieces in the ground state manifold can be counted exactly.



قيم البحث

اقرأ أيضاً

124 - Samarth Chandra 2007
We study the ground state energy E_G(n) of N classical n-vector spins with the hamiltonian H = - sum_{i>j} J_ij S_i.S_j where S_i and S_j are n-vectors and the coupling constants J_ij are arbitrary. We prove that E_G(n) is independent of n for all n > n_{max}(N) = floor((sqrt(8N+1)-1) / 2) . We show that this bound is the best possible. We also derive an upper bound for E_G(m) in terms of E_G(n), for m<n. We obtain an upper bound on the frustration in the system, as measured by F(n), which is defined to be (sum_{i>j} |J_ij| + E_G(n)) / (sum_{i>j} |J_ij|). We describe a procedure for constructing a set of J_ijs such that an arbitrary given state, {S_i}, is the ground state.
Using (infinite) density matrix renormalization group techniques, ground state properties of antiferromagnetic S=1 Heisenberg spin chains with exchange and single-site anisotropies in an external field are studied. The phase diagram is known to displ ay a plenitude of interesting phases. We elucidate quantum phase transitions between the supersolid and spin-liquid as well as the spin-liquid and the ferromagnetic phases. Analyzing spin correlation functions in the spin-liquid phase, commensurate and (two distinct) incommensurate regions are identified.
A study of the d-dimensional classical Heisenberg ferromagnetic model in the presence of a magnetic field is performed within the two-time Green functions framework in classical statistical physics. We extend the well known quantum Callen method to d erive analytically a new formula for magnetization. Although this formula is valid for any dimensionality, we focus on one- and three- dimensional models and compare the predictions with those arising from a different expression suggested many years ago in the context of the classical spectral density method. Both frameworks give results in good agreement with the exact numerical transfer-matrix data for the one-dimensional case and with the exact high-temperature-series results for the three-dimensional one. In particular, for the ferromagnetic chain, the zero-field susceptibility results are found to be consistent with the exact analytical ones obtained by M.E. Fisher. However, the formula derived in the present paper provides more accurate predictions in a wide range of temperatures of experimental and numerical interest.
We study classical and quantum Heisenberg antiferromagnets with exchange anisotropy of XXZ-type and crystal field single-ion terms of quadratic and cubic form in a field. The magnets display a variety of phases, including the spin-flop (or, in the qu antum case, spin-liquid) and biconical (corresponding, in the quantum lattice gas description, to supersolid) phases. Applying ground-state considerations, Monte Carlo and density matrix renormalization group methods, the impact of quantum effects and lattice dimension is analysed. Interesting critical and multicritical behaviour may occur at quantum and thermal phase transitions.
Using the algebro-geometric approach, we study the structure of semi-classical eigenstates in a weakly-anisotropic quantum Heisenberg spin chain. We outline how classical nonlinear spin waves governed by the anisotropic Landau-Lifshitz equation arise as coherent macroscopic low-energy fluctuations of the ferromagnetic ground state. Special emphasis is devoted to the simplest types of solutions, describing precessional motion and elliptic magnetisation waves. The internal magnon structure of classical spin waves is resolved by performing the semi-classical quantisation using the Riemann-Hilbert problem approach. We present an expression for the overlap of two semi-classical eigenstates and discuss how correlation functions at the semi-classical level arise from classical phase-space averaging.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا