ﻻ يوجد ملخص باللغة العربية
We study the ground state energy E_G(n) of N classical n-vector spins with the hamiltonian H = - sum_{i>j} J_ij S_i.S_j where S_i and S_j are n-vectors and the coupling constants J_ij are arbitrary. We prove that E_G(n) is independent of n for all n > n_{max}(N) = floor((sqrt(8N+1)-1) / 2) . We show that this bound is the best possible. We also derive an upper bound for E_G(m) in terms of E_G(n), for m<n. We obtain an upper bound on the frustration in the system, as measured by F(n), which is defined to be (sum_{i>j} |J_ij| + E_G(n)) / (sum_{i>j} |J_ij|). We describe a procedure for constructing a set of J_ijs such that an arbitrary given state, {S_i}, is the ground state.
We construct clusters of classical Heisenberg spins with two-spin $vec{S}_i.vec{S}_j$-type interactions for which the ground state manifold consists of disconnected pieces. We extend the construction to lattices and couplings for which the ground sta
We revisit the effects of short-ranged random quenched disorder on the universal scaling properties of the classical $N$-vector model with cubic anisotropy. We set up the nonconserved relaxational dynamics of the model, and study the universal dynami
Typical of modern quantum technologies employing nanomechanical oscillators is to demand few mechanical quantum excitations, for instance, to prolong coherence times of a particular task or, to engineer a specific non-classical state. For this reason
We consider the calculation of ground-state expectation values for the non-Hermitian Z(N) spin chain described by free parafermions. For N=2 the model reduces to the quantum Ising chain in a transverse field with open boundary conditions. Use is made
When noninteracting fermions are confined in a $D$-dimensional region of volume $mathrm{O}(L^D)$ and subjected to a continuous (or piecewise continuous) potential $V$ which decays sufficiently fast with distance, in the thermodynamic limit, the groun