ﻻ يوجد ملخص باللغة العربية
Let x be a signal to be sparsely decomposed over a redundant dictionary A, i.e., a sparse coefficient vector s has to be found such that x=As. It is known that this problem is inherently unstable against noise, and to overcome this instability, the authors of [Stable Recovery; Donoho et.al., 2006] have proposed to use an approximate decomposition, that is, a decomposition satisfying ||x - A s|| < delta, rather than satisfying the exact equality x = As. Then, they have shown that if there is a decomposition with ||s||_0 < (1+M^{-1})/2, where M denotes the coherence of the dictionary, this decomposition would be stable against noise. On the other hand, it is known that a sparse decomposition with ||s||_0 < spark(A)/2 is unique. In other words, although a decomposition with ||s||_0 < spark(A)/2 is unique, its stability against noise has been proved only for highly more restrictive decompositions satisfying ||s||_0 < (1+M^{-1})/2, because usually (1+M^{-1})/2 << spark(A)/2. This limitation maybe had not been very important before, because ||s||_0 < (1+M^{-1})/2 is also the bound which guaranties that the sparse decomposition can be found via minimizing the L1 norm, a classic approach for sparse decomposition. However, with the availability of new algorithms for sparse decomposition, namely SL0 and Robust-SL0, it would be important to know whether or not unique sparse decompositions with (1+M^{-1})/2 < ||s||_0 < spark(A)/2 are stable. In this paper, we show that such decompositions are indeed stable. In other words, we extend the stability bound from ||s||_0 < (1+M^{-1})/2 to the whole uniqueness range ||s||_0 < spark(A)/2. In summary, we show that all unique sparse decompositions are stably recoverable. Moreover, we see that sparser decompositions are more stable.
The problem of recovering a structured signal from its linear measurements in the presence of speckle noise is studied. This problem appears in many imaging systems such as synthetic aperture radar and optical coherence tomography. The current acquis
Let A be an n by m matrix with m>n, and suppose that the underdetermined linear system As=x admits a sparse solution s0 for which ||s0||_0 < 1/2 spark(A). Such a sparse solution is unique due to a well-known uniqueness theorem. Suppose now that we ha
In this work, we consider the problem of recovering analysis-sparse signals from under-sampled measurements when some prior information about the support is available. We incorporate such information in the recovery stage by suitably tuning the weigh
In this paper, we propose a geometric shaping (GS) strategy to design 8, 16, 32 and 64-ary modulation formats for the optical fibre channel impaired by both additive white Gaussian (AWGN) and phase noise. The constellations were optimised to maximise
This paper studies the problem of accurately recovering a structured signal from a small number of corrupted sub-Gaussian measurements. We consider three different procedures to reconstruct signal and corruption when different kinds of prior knowledg