ﻻ يوجد ملخص باللغة العربية
Effective Lagrangian for pure Yang-Mills gauge fields invariant under the standard space-time and local gauge SU(3) transformations is considered. It is demonstrated that a set of twelve degenerated minima exists as soon as a nonzero gluon condensate is postulated. The minima are connected to each other by the parity transformations and Weyl group transformations associated with the color su(3) algebra. The presence of degenerated discrete minima in the effective potential leads to the solutions of the effective Euclidean equations of motion in the form of the kink-like gauge field configurations interpolating between different minima. Spectrum of charged scalar field in the kink background is discussed.
We compute nonequilibrium dynamics of plasma instabilities in classical-statistical lattice gauge theory in 3+1 dimensions. The simulations are done for the first time for the SU(3) gauge group relevant for quantum chromodynamics. We find a qualitati
According to recent studies on resurgence scenario of quantum systems, some topological objects with fractional charges play an important role to see the resurgence structure. In this talk, we report a numerical evidence of the fractional-instantons
We show how to generalize the previous result of the monopole condensation in SU(2) QCD to SU(3) QCD. We present the gauge independent Weyl symmetric Abelian decomposition of the SU(3) QCD which decomposes the gluons to the color neutral neurons and
We study whether higher-dimensional operators in effective field theories, in particular in the Standard Model Effective Field Theory (SMEFT), can source gauge anomalies via the modification of the interactions involved in triangle diagrams. We find
We determine the time evolution of fluctuations of the Polyakov loop after a quench into the deconfined phase of SU(3) gauge theory from a simple classical relativistic Lagrangian. We compare the structure factors, which indicate spinodal decompositi