ﻻ يوجد ملخص باللغة العربية
We study whether higher-dimensional operators in effective field theories, in particular in the Standard Model Effective Field Theory (SMEFT), can source gauge anomalies via the modification of the interactions involved in triangle diagrams. We find no evidence of such gauge anomalies at the level of dimension-6 operators that can therefore be chosen independently to each others without spoiling the consistency of SMEFT, at variance with recent claims. The underlying reason is that gauge-invariant combinations of Goldstone bosons and massive gauge fields are allowed to couple to matter currents which are not conserved. We show this in a toy model by computing the relevant triangle diagrams, as well as by working out Wess--Zumino terms in the bosonic EFT below all fermion masses. The same approach applies directly to the Standard Model both at the renormalisable level, providing a convenient and unusual way to check that the SM is anomaly free, as well as at the non-renormalisable level in SMEFT.
If the Standard Model is understood as the first term of an effective field theory, the anomaly-cancellation conditions have to be worked out and fulfilled order by order in the effective field-theory expansion. We bring attention to this issue and s
We develop the geometric formulation of the Standard Model Effective Field Theory (SMEFT). Using this approach we derive all-orders results in the $sqrt{2 langle H^dagger H rangle}/Lambda$ expansion relevant for studies of electroweak precision and Higgs data.
We revisit the effective field theory of the standard model that is extended with sterile neutrinos, $N$. We examine the basis of complete and independent effective operators involving $N$ up to mass dimension seven (dim-7). By employing equations of
We compute the one-loop renormalisation group running of the bosonic Standard Model effective operators to order $v^4/Lambda^4$, with $vsim 246$ GeV being the electroweak scale and $Lambda$ the unknown new physics threshold. We concentrate on the eff
We present a practical three-step procedure of using the Standard Model effective field theory (SM EFT) to connect ultraviolet (UV) models of new physics with weak scale precision observables. With this procedure, one can interpret precision measurem