ترغب بنشر مسار تعليمي؟ اضغط هنا

Strong magnetic response of submicron Silicon particles in the infrared

147   0   0.0 ( 0 )
 نشر من قبل Juan Jose Saenz
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

High-permittivity dielectric particles with resonant magnetic properties are being explored as constitutive elements of new metamaterials and devices in the microwave regime. Magnetic properties of low-loss dielectric nanoparticles in the visible or infrared are not expected due to intrinsic low refractive index of optical materials in these regimes. Here we analyze the dipolar electric and magnetic response of loss-less dielectric spheres made of moderate permittivity materials. For low material refractive index there are no sharp resonances due to strong overlapping between different multipole contributions. However, we find that Silicon particles with refractive index 3.5 and radius approx. 200nm present a dipolar and strong magnetic resonant response in telecom and near-infrared frequencies, (i.e. at wavelengths approx. 1.2-2 micrometer). Moreover, the light scattered by these Si particles can be perfectly described by dipolar electric and magnetic fields, quadrupolar and higher order contributions being negligible.



قيم البحث

اقرأ أيضاً

Parallel sorting of orbital angular momentum (OAM) and polarization has recently acquired paramount importance and interest in a wide range of fields ranging from telecommunications to high-dimensional quantum cryptography. Due to their inherently po larization-sensitive optical response, optical elements acting on the geometric phase prove to be useful for processing structured light beams with orthogonal polarization states by means of a single optical platform. In this work, we present the design, fabrication and test of a Pancharatnam-Berry optical element in silicon implementing a log-pol optical transformation at 1310 nm for the realization of an OAM sorter based on the conformal mapping between angular and linear momentum states. The metasurface is realized in the form of continuously-variant subwavelength gratings, providing high-resolution in the definition of the phase pattern. A hybrid device is fabricated assembling the metasurface for the geometric phase control with multi-level diffractive optics for the polarization-independent manipulation of the dynamic phase. The optical characterization confirms the capability to sort orbital angular momentum and circular polarization at the same time.
Semiconductor nanowires offer great potential for realizing broadband photodetectors that are compatible with silicon technology. However, the spectral range of such detectors has so far been limited to selected regions in the ultraviolet, visible an d near infrared. Here, we report on broadband nanowire heterostructure array photodetectors exhibiting a photoresponse from the visible to long-wavelength infrared. In particular, the infrared response from 3-20 um is enabled by normal incidence excitation of intersubband transitions in low-bandgap InAsP quantum discs synthesized axially within InP nanowires. The optical characteristics are explained by the excitation of the longitudinal component of optical modes in the photonic crystal formed by the nanostructured portion of the detectors, combined with a non-symmetric potential profile of the discs resulting from synthesis. Our results provide a generalizable insight into how broadband nanowire photodetectors may be designed, and how engineered nanowire heterostructures open up new fascinating opportunities for optoelectronics.
The regime of strong light-matter coupling is typically associated with weak excitation. With current realizations of cavity-QED systems, strong coupling may persevere even at elevated excitation levels sufficient to cross the threshold to lasing. In the presence of stimulated emission, the vacuum-Rabi doublet in the emission spectrum is modified and the established criterion for strong coupling no longer applies. We provide a generalized criterion for strong coupling and the corresponding emission spectrum, which includes the influence of higher Jaynes-Cummings states. The applicability is demonstrated in a theory-experiment comparison of a few-emitter quantum-dot--micropillar laser as a particular realization of the driven dissipative Jaynes-Cummings model. Furthermore, we address the question if and for which parameters true single-emitter lasing can be achieved, and provide evidence for the coexistence of strong coupling and lasing in our system in the presence of background emitter contributions.
The excitation of toroidal multipoles in metamaterials was investigated for high-Q response at a subwavelength scale. In this study, we explored the optimization of toroidal excitations in a planar metamaterial comprised of asymmetric split ring reso nators (ASRRs). It was found that the scattering power of toroidal dipole can be remarkably strengthened by adjusting the characteristic parameter of ASRRs: asymmetric factor. Interestingly, the improvement in toroidal excitation accompanies increment on the Q-factor of the toroidal metamaterial; it is shown that both the scattering power of toroidal dipole and the Q-factor were increased more than one order by changing the asymmetric factor of ASRRs. The optimization in excitation of toroidal multipole provide opportunity to further increase the Q-factor of metamaterial and boost light-matter interactions at the subwavelength scale for potential applications in low-power nonlinear processing, and sensitive photonic applications.
140 - R. J. Koch , Th. Seyller , 2010
We report on strong coupling of the charge carrier plasmon $omega_{PL}$ in graphene with the surface optical phonon $omega_{SO}$ of the underlying SiC(0001) substrate with low electron concentration ($n=1.2times 10^{15}$ $cm^{-3}$) in the long wavele ngth limit ($q_parallel rightarrow 0$). Energy dependent energy-loss spectra give for the first time clear evidence of two coupled phonon-plasmon modes $omega_pm$ separated by a gap between $omega_{SO}$ ($q_parallel rightarrow 0$) and $omega_{TO}$ ($q_parallel >> 0$), the transverse optical phonon mode, with a Fano-type shape, in particular for higher primary electron energies ($E_0 ge 20eV$). A simplified model based on dielectric theory is able to simulate our energy - loss spectra as well as the dispersion of the two coupled phonon-plasmon modes $omega_pm$. In contrast, Liu and Willis [1] postulate in their recent publication no gap and a discontinuous dispersion curve with a one-peak structure from their energy-loss data.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا