ﻻ يوجد ملخص باللغة العربية
Correlated imaging through atmospheric turbulence is studied, and the analytical expressions describing turbulence effects on image resolution are derived. Compared with direct imaging, correlated imaging can reduce the influence of turbulence to a certain extent and reconstruct high-resolution images. The result is backed up by numerical simulations, in which turbulence-induced phase perturbations are simulated by random phase screens inserting propagation paths.
We describe a new model for image propagation through open air in the presence of changes in the index of refraction (e.g. due to turbulence) using the theory of optimal transport. We describe the relationship between photon density, or image intensi
A laser beam propagating to a remote target through atmospheric turbulence acquires intensity fluctuations. If the target is cooperative and provides a coherent return beam, the phase measured near the beam transmitter and adaptive optics can, in pri
We investigate the effect of turbulence on quantum ghost imaging. We use entangled photons and demonstrate that for a novel experimental configuration the effect of turbulence can be greatly diminished. By decoupling the entangled photon source from
Vector beams are inhomogeneously polarized optical fields with nonseparable, quantum-like correlations between their polarisation and spatial components, and hold tremendous promise for classical and quantum communication across various channels, e.g
We have experimentally studied the degradation of mode purity for light beams carrying orbital angular momentum (OAM) propagating through simulated atmospheric turbulence. The turbulence is modeled as a randomly varying phase aberration, which obeys