ترغب بنشر مسار تعليمي؟ اضغط هنا

Dissertations Repository System Using Context Module

200   0   0.0 ( 0 )
 نشر من قبل William Jackson
 تاريخ النشر 2010
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Without a doubt, the electronic learning makes education quite flexible. Nowadays, all organizations and institutions are trying to avoid Monotony and the delay and inertia. As well the universities should be improving their systems continually to achieve success. Whereas, the students need to access the dissertations in the library. In this paper we will present Dissertations Repository System Using Context Module to allow the students to benefit the dissertations which is in the library flexibly.



قيم البحث

اقرأ أيضاً

In the age of technology, the information communication technology becomes very important especially in education field. Students must be allowed to learn anytime, anywhere and at their own place. The facility of library in the university should be d eveloped. In this paper we are going to present new Quantitative Study for Dissertations Repository System and also recommend future application of the approach.
Electronic Theses and Dissertations (ETDs) contain domain knowledge that can be used for many digital library tasks, such as analyzing citation networks and predicting research trends. Automatic metadata extraction is important to build scalable digi tal library search engines. Most existing methods are designed for born-digital documents, so they often fail to extract metadata from scanned documents such as for ETDs. Traditional sequence tagging methods mainly rely on text-based features. In this paper, we propose a conditional random field (CRF) model that combines text-based and visual features. To verify the robustness of our model, we extended an existing corpus and created a new ground truth corpus consisting of 500 ETD cover pages with human validated metadata. Our experiments show that CRF with visual features outperformed both a heuristic and a CRF model with only text-based features. The proposed model achieved 81.3%-96% F1 measure on seven metadata fields. The data and source code are publicly available on Google Drive (https://tinyurl.com/y8kxzwrp) and a GitHub repository (https://github.com/lamps-lab/ETDMiner/tree/master/etd_crf), respectively.
Recent reproducibility case studies have raised concerns showing that much of the deposited research has not been reproducible. One of their conclusions was that the way data repositories store research data and code cannot fully facilitate reproduci bility due to the absence of a runtime environment needed for the code execution. New specialized reproducibility tools provide cloud-based computational environments for code encapsulation, thus enabling research portability and reproducibility. However, they do not often enable research discoverability, standardized data citation, or long-term archival like data repositories do. This paper addresses the shortcomings of data repositories and reproducibility tools and how they could be overcome to improve the current lack of computational reproducibility in published and archived research outputs.
We developed a real-time, high-quality semi-supervised video object segmentation algorithm. Its accuracy is on par with the most accurate, time-consuming online-learning model, while its speed is similar to the fastest template-matching method with s ub-optimal accuracy. The core component of the model is a novel global context module that effectively summarizes and propagates information through the entire video. Compared to previous approaches that only use one frame or a few frames to guide the segmentation of the current frame, the global context module uses all past frames. Unlike the previous state-of-the-art space-time memory network that caches a memory at each spatio-temporal position, the global context module uses a fixed-size feature representation. Therefore, it uses constant memory regardless of the video length and costs substantially less memory and computation. With the novel module, our model achieves top performance on standard benchmarks at a real-time speed.
The performance of object instance segmentation in remote sensing images has been greatly improved through the introduction of many landmark frameworks based on convolutional neural network. However, the object densely issue still affects the accurac y of such segmentation frameworks. Objects of the same class are easily confused, which is most likely due to the close docking between objects. We think context information is critical to address this issue. So, we propose a novel framework called SLCMASK-Net, in which a sequence local context module (SLC) is introduced to avoid confusion between objects of the same class. The SLC module applies a sequence of dilation convolution blocks to progressively learn multi-scale context information in the mask branch. Besides, we try to add SLC module to different locations in our framework and experiment with the effect of different parameter settings. Comparative experiments are conducted on remote sensing images acquired by QuickBird with a resolution of $0.5m-1m$ and the results show that the proposed method achieves state-of-the-art performance.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا