ترغب بنشر مسار تعليمي؟ اضغط هنا

Spatially Resolved [CII] Emission in SPT0346-52: A Hyper-Starburst Galaxy Merger at z~5.7

84   0   0.0 ( 0 )
 نشر من قبل Katrina C. Litke
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Katrina C. Litke




اسأل ChatGPT حول البحث

SPT0346-52 is one of the most most luminous and intensely star-forming galaxies in the universe, with L_FIR > 10^13 L_sol and Sigma_SFR ~ 4200 M_sol yr^-1 kpc^-2. In this paper, we present ~0.15 ALMA observations of the [CII]158micron emission line in this z=5.7 dusty star-forming galaxy. We use a pixellated lensing reconstruction code to spatially and kinematically resolve the source-plane [CII] and rest-frame 158 micron dust continuum structure at ~700 pc (~0.12) resolution. We discuss the [CII] deficit with a pixellated study of the L_[CII]/L_FIR ratio in the source plane. We find that individual pixels within the galaxy follow the same trend found using unresolved observations of other galaxies, indicating that the deficit arises on scales <700 pc. The lensing reconstruction reveals two spatially and kinematically separated components (~1 kpc and ~500 km s^-1 apart) connected by a bridge of gas. Both components are found to be globally unstable, with Toomre Q instability parameters << 1 everywhere. We argue that SPT0346-52 is undergoing a major merger, which is likely driving the intense and compact star formation.



قيم البحث

اقرأ أيضاً

We present Chandra ACIS-S and ATCA radio continuum observations of the strongly lensed dusty, star-forming galaxy SPT-S J034640-5204.9 (hereafter SPT0346-52) at $z$ = 5.656. This galaxy has also been observed with ALMA, HST, Spitzer, Herschel, APEX, and the VLT. Previous observations indicate that if the infrared (IR) emission is driven by star formation, then the inferred lensing-corrected star formation rate ($sim$ 4500 $M_{sun}$ yr$^{-1}$) and star formation rate surface density $Sigma_{rm SFR}$ ($sim$ 2000 $M_{sun} {yr^{-1}} {kpc^{-2}}$) are both exceptionally high. It remained unclear from the previous data, however, whether a central active galactic nucleus (AGN) contributes appreciably to the IR luminosity. The {it Chandra} upper limit shows that SPT0346-52 is consistent with being star-formation dominated in the X-ray, and any AGN contribution to the IR emission is negligible. The ATCA radio continuum upper limits are also consistent with the FIR-to-radio correlation for star-forming galaxies with no indication of an additional AGN contribution. The observed prodigious intrinsic IR luminosity of (3.6 $pm$ 0.3) $times$ 10$^{13}$ $L_{sun}$ originates almost solely from vigorous star formation activity. With an intrinsic source size of 0.61 $pm$ 0.03 kpc, SPT0346-52 is confirmed to have one of the highest $Sigma_{SFR}$ of any known galaxy. This high $Sigma_{SFR}$, which approaches the Eddington limit for a radiation pressure supported starburst, may be explained by a combination of very high star formation efficiency and gas fraction.
227 - Carlos De Breuck 2014
We present spatially resolved Atacama Large Millimeter/submillimeter Array (ALMA) [CII] observations of the z=4.7555 submillimetre galaxy, ALESS 73.1. Our 0.5 FWHM map resolves the [CII] emitting gas which is centred close to the active galactic nucl eus (AGN). The gas kinematics are dominated by rotation but with high turbulence, v_rot/sigma_int~3.1, and a Toomre Q parameter <1 throughout the disk. By fitting three independent thin rotating disk models to our data, we derive a total dynamical mass of 3+-2x10^10 M_sol. This is close to the molecular gas mass derived from previous CO(2-1) observations, and implies a CO to H_2 conversion factor alpha_CO<2.3M_sol(K km/s/pc^2)^-1. The mass budget also constrains the stellar mass to <3.1x10^10 M_sol, and entails a gas fraction of f_gas>~0.4. The diameter of the dust continuum emission is <2 kpc, while the star-formation rate is as high as 1000 M_sol/yr. Combined with our stellar mass constraint, this implies an extreme specific star formation rate >80 Gyr^{-1}, especially since there are no clear indications of recent merger activity. Finally, our high signal-to-noise [CII] measurement revises the observed [NII]/[CII] ratio, which suggests a close to solar metallicity, unless the [CII] flux contains significant contributions from HII regions. Our observations suggest that ALESS73.1 is a nascent galaxy undergoing its first major burst of star formation, embedded within an unstable but metal-rich gas disk.
[Abridged] We discovered in the Herschel Reference Survey an extremely bright IR source with $S_{500}$~120mJy (Red Virgo 4 - RV4). Based on IRAM/EMIR and IRAM/NOEMA detections of the CO(5-4), CO(4-3), and [CI] lines, RV4 is located at z=4.724, yieldi ng a total observed L$_{IR}$ of 1.1+/-0.6x0$^{14}$L$_{odot}$. At the position of the Herschel emission, three blobs are detected with the VLA at 10cm. The CO(5-4) line detection of each blob confirms that they are at the same redshift with the same line width, indicating that they are multiple images of the same source. In Spitzer and deep optical observations, two sources, High-z Lens 1 (HL1) West and HL1 East, are detected at the center of the three VLA/NOEMA blobs. These two sources are placed at z=1.48 with XSHOOTER spectra, suggesting that they could be merging and gravitationally lensing the emission of RV4. HL1 is the second most distant lens known to date in strong lensing systems. The Einstein radius of the lensing system is 2.2+/-0.2 (20kpc). The high redshift of HL1 and the large Einstein radius are highly unusual for a strong lensing system. We present the ISM properties of the background source RV4. Different estimates of the gas depletion time yield low values suggesting that RV4 is a SB galaxy. Among all high-z SMGs, this source exhibits one of the lowest L$_{[CI]}$ to L$_{IR}$ ratios, 3.2+/-0.9x10$^{-6}$, suggesting an extremely short gas tdepl of only 14+/-5Myr. It also shows a relatively high L$_{[CI]}$ to L$_{CO(4-3)}$ ratio (0.7+/-0.2) and low L$_{CO(5-4)}$ to L$_{IR}$ ratio (only ~50% of the value expected for normal galaxies) hinting a low density of gas. Finally, we discuss that the short tdepl of RV4 can be explained by either a very high SFE, which is difficult to reconcile with major mergers simulations of high-z galaxies, or a rapid decrease of SF, which would bias the estimate of tdepl toward low value.
We report on ~0.35(~2 kpc) resolution observations of the [CII] and dust continuum emission from five z>6 quasar host-companion galaxy pairs obtained with the Atacama Large Millimeter/submillimeter Array. The [CII] emission is resolved in all galaxie s, with physical extents of 3.2-5.4 kpc. The dust continuum is on-average 40% more compact, which results in larger [CII] deficits in the center of the galaxies. However, the measured [CII] deficits are fully consistent with those found at lower redshifts. Four of the galaxies show [CII] velocity fields that are consistent with ordered rotation, while the remaining six galaxies show no clear velocity gradient. All galaxies have high (~80-200 km/s) velocity dispersions, consistent with the interpretation that the interstellar medium (ISM) of these high redshift galaxies is turbulent. By fitting the galaxies with kinematic models, we estimate the dynamical mass of these systems, which range between (0.3 -> 5.4) x 1E10 Msun. For the three closest separation galaxy pairs, we observe dust and [CII] emission from gas in between and surrounding the galaxies, which is an indication that tidal interactions are disturbing the gas in these systems. Although gas exchange in these tidal interactions could power luminous quasars, the existence of quasars in host galaxies without nearby companions suggests that tidal interactions are not the only viable method for fueling their active centers. These observations corroborate the assertion that accreting supermassive black holes do not substantially contribute to the [CII] and dust continuum emission of the quasar host galaxies, and showcase the diverse ISM properties of galaxies when the universe was less than one billion years old.
We probe the star formation properties of the gas in AzTEC-1 in the COSMOS field, one of the best resolved and brightest starburst galaxies at $z approx 4.3$, forming stars at a rate > 1000 $mathrm{M_{odot}},mathrm{yr^{-1}}$. Using recent ALMA observ ations, we study star formation in the galaxy nucleus and an off-center star-forming clump and measure a median star formation rate (SFR) surface density of $Sigma^{mathrm{nucleus}}_{mathrm{SFR}} = 270pm54$ and $Sigma^{mathrm{sfclump}}_{mathrm{SFR}} = 170pm38,mathrm{M_{odot}},mathrm{yr}^{-1},mathrm{kpc}^{-2}$, respectively. Following the analysis by Sharda et al. (2018), we estimate the molecular gas mass, freefall time and turbulent Mach number in these regions to predict $Sigma_{mathrm{SFR}}$ from three star formation relations in the literature. The Kennicutt-Schmidt (Kennicutt 1998, KS) relation, which is based on the gas surface density, underestimates the $Sigma_{mathrm{SFR}}$ in these regions by a factor 2-3. The $Sigma_{mathrm{SFR}}$ we calculate from the single-freefall model of Krumholz et al. 2012 (KDM) is consistent with the measured $Sigma_{mathrm{SFR}}$ in the nucleus and the star-forming clump within the uncertainties. The turbulence-regulated star formation relation by Salim et al. 2015 (SFK) agrees slightly better with the observations than the KDM relation. Our analysis reveals that an interplay between turbulence and gravity can help sustain high SFRs in high-redshift starbursts. It can also be extended to other high- and low-redshift galaxies thanks to the high angular resolution and sensitivity of ALMA observations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا