ترغب بنشر مسار تعليمي؟ اضغط هنا

Anomalous Angular Dependence of the Dynamic Structure Factor near Bragg Reflections: Graphite

125   0   0.0 ( 0 )
 نشر من قبل R. Hambach
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The electron energy-loss function of graphite is studied for momentum transfers q beyond the first Brillouin zone. We find that near Bragg reflections the spectra can change drastically for very small variations in q. The effect is investigated by means of first principle calculations in the random phase approximation and confirmed by inelastic x-ray scattering measurements of the dynamic structure factor S(q,omega). We demonstrate that this effect is governed by crystal local field effects and the stacking of graphite. It is traced back to a strong coupling between excitations at small and large momentum transfers.



قيم البحث

اقرأ أيضاً

We have investigated the role of localized {it d} bands in the dynamical response of Au, on the basis of {it ab initio} pseudopotential calculations. The density-response function has been evaluated in the random-phase approximation. For small moment a, we have found a double peak structure in the energy-loss function, which results from the presence of {it d} electrons. These results are in good agreement with the experimentally determined optical response of gold. We also analyze the dependence of the dynamical structure factor on the wave vector {bf q}.
We observe variations on the surface potential of graphite samples that we attribute to the adsorption physisorption of tetracene isomers.
We have investigated the anisotropic thermal expansion of graphite using ab-initio calculation of lattice dynamics and anharmonicity of the phonons, which reveal that the negative thermal expansion (NTE) in the a-b plane below 600 K and very large po sitive thermal expansion along the c-axis up to high temperatures arise due to various phonons polarized along the c-axis. While the NTE arises from the anharmonicity of transverse phonons over a broad energy range up to 60 meV, the large positive expansion along the c-axis occurs largely due to the longitudinal optic phonon modes around 16 meV and a large linear compressibility along the c-axis. The hugely anisotropic bonding in graphite is found to be responsible for wide difference in the energy range of the transverse and longitudinal phonon modes polarized along the c-axis, which are responsible for the anomalous thermal expansion behavior. This behaviour is in contrast to other nearly isotropic hexagonal structures like water-ice, which show anomalous thermal expansion in a small temperature range arising from a narrow energy range of phonons.
We have studied the electronic structure of the interface between 6H-SiC{0001} and graphite. On n-type and p-type 6H-SiC(0001) we observe Schottky barriers of Phi_b,n^Si= 0.3+-0.1eV and Phi_b,p^Si=2.7+-0.1eV, respectively. The observed barrier is fac e specific: on n-type 6H-SiC(000-1) we find Phi_b,n^C=1.3+-0.1eV. The impact of these barriers on the electrical properties of metal/SiC contacts is discussed.
The temperature dependence of the electron spin $g$ factor in GaAs is investigated experimentally and theoretically. Experimentally, the $g$ factor was measured using time-resolved Faraday rotation due to Larmor precession of electron spins in the te mperature range between 4.5 K and 190 K. The experiment shows an almost linear increase of the $g$ value with the temperature. This result is in good agreement with other measurements based on photoluminescence quantum beats and time-resolved Kerr rotation up to room temperature. The experimental data are described theoretically taking into account a diminishing fundamental energy gap in GaAs due to lattice thermal dilatation and nonparabolicity of the conduction band calculated using a five-level kp model. At higher temperatures electrons populate higher Landau levels and the average $g$ factor is obtained from a summation over many levels. A very good description of the experimental data is obtained indicating that the observed increase of the spin $g$ factor with the temperature is predominantly due to bands nonparabolicity.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا