ترغب بنشر مسار تعليمي؟ اضغط هنا

Surface electric potential dynamic on graphite

286   0   0.0 ( 0 )
 نشر من قبل Julio Gomez-Herrero
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We observe variations on the surface potential of graphite samples that we attribute to the adsorption physisorption of tetracene isomers.



قيم البحث

اقرأ أيضاً

We investigate the dependence of the electrical resistivity of $sim 60 $nm thick single crystalline graphite samples on the defect concentration produced by proton irradiation at very low fluences. We show that the resistivity decreases few percent a t room temperature after inducing defects at concentrations as low as $sim 0.1 $ppm due to the increase in the carrier density, in agreement with theoretical estimates. The overall results indicate that the carrier densities measured in graphite are not intrinsic but related to defects and impurities.
The electron energy-loss function of graphite is studied for momentum transfers q beyond the first Brillouin zone. We find that near Bragg reflections the spectra can change drastically for very small variations in q. The effect is investigated by me ans of first principle calculations in the random phase approximation and confirmed by inelastic x-ray scattering measurements of the dynamic structure factor S(q,omega). We demonstrate that this effect is governed by crystal local field effects and the stacking of graphite. It is traced back to a strong coupling between excitations at small and large momentum transfers.
We report active control of the friction force at the contact between a nanoscale asperity and a La$_{0.55}$Ca$_{0.45}$MnO$_3$ (LCMO) thin film using electric fields. We use friction force microscopy under ultrahigh vacuum conditions to measure the f riction force as we change the film resistive state by electric field-induced resistive switching. Friction forces are high in the insulating state and clearly change to lower values when the probed local region is switched to the conducting state. Upon switching back to an insulating state, the friction forces increase again. Thus, we demonstrate active control of friction without having to change the contact temperature or pressure. By comparing with measurements of friction at the metal-to-insulator transition and with the effect of applied voltage on adhesion, we rule out electronic excitations, electrostatic forces and changes in contact area as the reasons for the effect of resistive switching on friction. Instead, we argue that friction is limited by phonon relaxation times which are strongly coupled to the electronic degrees of freedom through distortions of the MnO6 octahedra. The concept of controlling friction forces by electric fields should be applicable to any materials where the field produces strong changes in phonon lifetimes.
A method for the direct patterning of electrostatic potential at the surface of hydroxyapatite is presented here. Micro-domains of surface potential have been created on hydroxyapatite coatings by a 20 keV focused electron beam with minimal alteratio ns of surface chemistry. The success of such approach has been confirmed by Kelvin Probe Force Microscopy measurements, which show that this method is capable of creating micron sized positive and negative local electrostatic potential. The shape and potential difference of these domains were found to depend on the dose of total injected charge from the electron beam as well as the speed with which such charge is injected.
We show that the work function of exfoliated single layer graphene can be modified by irradiation with swift (E_{kin}=92 MeV) heavy ions under glancing angles of incidence. Upon ion impact individual surface tracks are created in graphene on SiC. Due to the very localized energy deposition characteristic for ions in this energy range, the surface area which is structurally altered is limited to ~ 0.01 mum^2 per track. Kelvin probe force microscopy reveals that those surface tracks consist of electronically modified material and that a few tracks suffice to shift the surface potential of the whole single layer flake by ~ 400 meV. Thus, the irradiation turns the initially n-doped graphene into p-doped graphene with a hole density of 8.5 x 10^{12} holes/cm^2. This doping effect persists even after heating the irradiated samples to 500{deg}C. Therefore, this charge transfer is not due to adsorbates but must instead be attributed to implanted atoms. The method presented here opens up a new way to efficiently manipulate the charge carrier concentration of graphene.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا