ترغب بنشر مسار تعليمي؟ اضغط هنا

Lax formalism for q-Painleve equations with affine Weyl group symmetry of type E^{(1)}_n

172   0   0.0 ( 0 )
 نشر من قبل Yasuhiko Yamada
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Yasuhiko Yamada




اسأل ChatGPT حول البحث

An explicit form of the Lax pair for the q-difference Painleve equation with affine Weyl group symmetry of type E^{(1)}_8 is obtained. Its degeneration to E^{(1)}_7, E^{(1)}_6 and D^{(1)}_5 cases are also given.



قيم البحث

اقرأ أيضاً

102 - Masatoshi Noumi 2003
An overview is given on recent developments in the affine Weyl group approach to Painleve equations and discrete Painleve equations, based on the joint work with Y. Yamada and K. Kajiwara.
The goal of this paper is to investigate the missing part of the story about the relationship between the orthogonal polynomial ensembles and Painleve equations. Namely, we consider the $q$-Racah polynomial ensemble and show that the one-interval gap probabilities in this case can be expressed through a solution of the discrete $q$-P$left(E_7^{(1)}/A_{1}^{(1)}right)$ equation. Our approach also gives a new Lax pair for this equation. This Lax pair has an interesting additional involutive symmetry structure.
122 - Yusuke Sasano 2010
We find a two-parameter family of coupled Painleve systems in dimension four with affine Weyl group symmetry of type $A_4^{(2)}$. For a degenerate system of $A_4^{(2)}$ system, we also find a one-parameter family of coupled Painleve systems in dimens ion four with affine Weyl group symmetry of type $A_1^{(1)}$. We show that for each system, we give its symmetry and holomorphy conditions. These symmetries, holomorphy conditions and invariant divisors are new. Moreover, we find a one-parameter family of partial differential systems in three variables with $W(A_1^{(1)})$-symmetry. We show the relation between its polynomial Hamiltonian system and an autonomous version of the system of type $A_1^{(1)}$.
An interpolation problem related to the elliptic Painleve equation is formulated and solved. A simple form of the elliptic Painleve equation and the Lax pair are obtained. Explicit determinant formulae of special solutions are also given.
195 - Yasuhiko Yamada 2009
A Lax formalism for the elliptic Painleve equation is presented. The construction is based on the geometry of the curves on ${mathbb P}^1times{mathbb P}^1$ and described in terms of the point configurations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا