ترغب بنشر مسار تعليمي؟ اضغط هنا

Coherence in monoidal track categories

247   0   0.0 ( 0 )
 نشر من قبل Yves Guiraud
 تاريخ النشر 2010
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We introduce homotopical methods based on rewriting on higher-dimensional categories to prove coherence results in categories with an algebraic structure. We express the coherence problem for (symmetric) monoidal categories as an asphericity problem for a track category and we use rewriting methods on polygraphs to solve it. The setting is extended to more general coherence problems, seen as 3-dimensional word problems in a track category, including the case of braided monoidal categories.



قيم البحث

اقرأ أيضاً

Indexed symmetric monoidal categories are an important refinement of bicategories -- this structure underlies several familiar bicategories, including the homotopy bicategory of parametrized spectra, and its equivariant and fiberwise generalizations. In this paper, we extend existing coherence theorems to the setting of indexed symmetric monoidal categories. The most central theorem states that a large family of operations on a bicategory defined from an indexed symmetric monoidal category are all canonically isomorphic. As a part of this theorem, we introduce a rigorous graphical calculus that specifies when two such operations admit a canonical isomorphism.
The category of Hilbert modules may be interpreted as a naive quantum field theory over a base space. Open subsets of the base space are recovered as idempotent subunits, which form a meet-semilattice in any firm braided monoidal category. There is a n operation of restriction to an idempotent subunit: it is a graded monad on the category, and has the universal property of algebraic localisation. Spacetime structure on the base space induces a closure operator on the idempotent subunits. Restriction is then interpreted as spacetime propagation. This lets us study relativistic quantum information theory using methods entirely internal to monoidal categories. As a proof of concept, we show that quantum teleportation is only successfully supported on the intersection of Alice and Bobs causal future.
We introduce DisCoPy, an open source toolbox for computing with monoidal categories. The library provides an intuitive syntax for defining string diagrams and monoidal functors. Its modularity allows the efficient implementation of computational expe riments in the various applications of category theory where diagrams have become a lingua franca. As an example, we used DisCoPy to perform natural language processing on quantum hardware for the first time.
This work is the first one in a series, in which we develop a mathematical theory of enriched (braided) monoidal categories and their representations. In this work, we introduce the notion of the $E_0$-center ($E_1$-center or $E_2$-center) of an enri ched (monoidal or braided monoidal) category, and compute the centers explicitly when the enriched (braided monoidal or monoidal) categories are obtained from the canonical constructions. These centers have important applications in the mathematical theory of gapless boundaries of 2+1D topological orders and that of topological phase transitions in physics. They also play very important roles in the higher representation theory, which is the focus of the second work in the series.
254 - Niles Johnson , Donald Yau 2021
Bimonoidal categories are categorical analogues of rings without additive inverses. They have been actively studied in category theory, homotopy theory, and algebraic $K$-theory since around 1970. There is an abundance of new applications and questio ns of bimonoidal categories in mathematics and other sciences. This work provides a unified treatment of bimonoidal and higher ring-like categories, their connection with algebraic $K$-theory and homotopy theory, and applications to quantum groups and topological quantum computation. With ample background material, extensive coverage, detailed presentation of both well-known and new theorems, and a list of open questions, this work is a user friendly resource for beginners and experts alike.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا