ﻻ يوجد ملخص باللغة العربية
Chiral perturbation theory predicts that in quantum chromodynamics (QCD), light dynamical quarks suppress the gauge-field topological susceptibility of the vacuum. The degree of suppression depends on quark multiplicity and masses. It provides a strong consistency test for fermion formulations in lattice QCD. Such tests are especially important for staggered fermion formulations that lack a full chiral symmetry and use the fourth-root procedure to achieve the desired number of sea quarks. Over the past few years we have measured the topological susceptibility on a large database of 18 gauge field ensembles, generated in the presence of 2+1 flavors of dynamical asqtad quarks with up and down quark masses ranging from 0.05 to 1 in units of the strange quark mass and lattice spacings ranging from 0.045 fm to 0.12 fm. Our study also includes three quenched ensembles with lattice spacings ranging from 0.06 to 0.12 fm. We construct the topological susceptibility from the integrated point-to-point correlator of the discretized topological charge density F-Fdual. To reduce its variance, we model the asymptotic tail of the correlator. The continuum extrapolation of our results for the topological susceptibility agrees nicely at small quark mass with the predictions of lowest-order SU(3) chiral perturbation theory, thus lending support to the validity of the fourth-root procedure.
Chiral perturbation theory predicts that in quantum chromodymamics light dynamical quarks suppress the topological (instanton) susceptibility. We investigate this suppression through direct numerical simulation using the Asqtad improved lattice fermi
We report new data for the topological susceptibility computed on 2+1 flavor dynamical configurations with lattice spacing 0.06 fm, generated with the asqtad action. The topological susceptibility is computed by HYP smearing and compared with rooted
The chiral symmetry at finite lattice spacing of Ginsparg-Wilson fermionic actions constrains the renormalization of the lattice operators; in particular, the topological susceptibility does not require any renormalization, when using a fermionic est
Knowledge of the derivative of the topological susceptibility at zero momentum is important for assessing the validity of the Witten-Veneziano formula for the eta mass, and likewise for the resolution of the EMC proton spin problem. We investigate th
As one test of the validity of the staggered-fermion fourth-root determinant trick, we examine the suppression of the topological susceptibility of the QCD vacuum in the limit of small quark mass. The suppression is sensitive to the number of light s