ﻻ يوجد ملخص باللغة العربية
We report new data for the topological susceptibility computed on 2+1 flavor dynamical configurations with lattice spacing 0.06 fm, generated with the asqtad action. The topological susceptibility is computed by HYP smearing and compared with rooted staggered chiral perturbation theory as the pion mass goes to zero. At 0.06 fm, the raw data is already quite close to the continuum extrapolated values obtained from coarser lattices. These results provide a further test of the asqtad action with rooted staggered flavors.
Chiral perturbation theory predicts that in quantum chromodynamics (QCD), light dynamical quarks suppress the gauge-field topological susceptibility of the vacuum. The degree of suppression depends on quark multiplicity and masses. It provides a stro
Chiral perturbation theory predicts that in quantum chromodymamics light dynamical quarks suppress the topological (instanton) susceptibility. We investigate this suppression through direct numerical simulation using the Asqtad improved lattice fermi
We compute the topological susceptibility $chi_t$ of 2+1-flavor lattice QCD with dynamical Mobius domain-wall fermions, whose residual mass is kept at 1 MeV or smaller. In our analysis, we focus on the fluctuation of the topological charge density in
We present results for the topological susceptibility at nonzero temperature obtained from lattice QCD with four dynamical quark flavours. We apply different smoothing methods, including gradient Wilson flow and over--improved cooling, before calcula
We determine the topological susceptibility chi_t in the topologically-trivial sector generated by lattice simulations of N_f = 2+1 QCD with overlap Dirac fermion, on a 16^3 x 48 lattice with lattice spacing ~ 0.11 fm, for five sea quark masses m_q r