ﻻ يوجد ملخص باللغة العربية
Let $Sigma$ be a compact Riemann surface and $h_{d,k}(Sigma)$ denote the space of degree $dgeq 1$ holomorphic maps $Sigmara CP^k$. In theoretical physics this arises as the moduli space of charge $d$ lumps (or instantons) in the $CP^k$ model on $Sigma$. There is a natural Riemannian metric on this moduli space, called the $L^2$ metric, whose geometry is conjectured to control the low energy dynamics of $CP^k$ lumps. In this paper an explicit formula for the $L^2$ metric on of $h_{d,k}(Sigma)$ in the special case $d=1$ and $Sigma=S^2$ is computed. Essential use is made of the kahler property of the $L^2$ metric, and its invariance under a natural action of $G=U(k+1)times U(2)$. It is shown that {em all} $G$-invariant kahler metrics on $h_{1,k}(S^2)$ have finite volume for $kgeq 2$. The volume of $h_{1,k}(S^2)$ with respect to the $L^2$ metric is computed explicitly and is shown to agree with a general formula for $h_{d,k}(Sigma)$ recently conjectured by Baptista. The area of a family of twice punctured spheres in $h_{d,k}(Sigma)$ is computed exactly, and a formal argument is presented in support of Baptistas formula for $h_{d,k}(S^2)$ for all $d$, $k$, and $h_{2,1}(T^2)$.
We study singularity formation in spherically symmetric solutions of the charge-one and charge-two sector of the (2+1)-dimensional S^2 sigma-model and the (4+1)-dimensional Yang-Mills model, near the adiabatic limit. These equations are non-integrabl
We introduce the category of holomorphic string algebroids, whose objects are Courant extensions of Atiyah Lie algebroids of holomorphic principal bundles, as considered by Bressler, and whose morphisms correspond to inner morphisms of the underlying
We prove that there does not exist a nontrivial quantization of the Poisson algebra of the symplectic manifold S^2 which is irreducible on the subalgebra generated by the components {S_1,S_2,S_3} of the spin vector. We also show that there does not e
We characterize the Lie derivative of spinor fields from a variational point of view by resorting to the theory of the Lie derivative of sections of gauge-natural bundles. Noether identities from the gauge-natural invariance of the first variational
We study codimension one holomorphic distributions on the projective three-space, analyzing the properties of their singular schemes and tangent sheaves. In particular, we provide a classification of codimension one distributions of degree at most 2