ﻻ يوجد ملخص باللغة العربية
A new calorimeter for measurements of the AC heat capacity and magnetocaloric effect of small samples in pulsed magnetic fields is discussed for the exploration of thermal and thermodynamic properties at temperatures down to 2 K. We tested the method up to mu 0H = 50 Tesla, but it could be extended to higher fields. For these measurements we used carefully calibrated bare chip Cernoxtextregistered and RuO2 thermometers, and we present a comparison of their performance. The monotonic temperature and magnetic field dependences of the magneto resistance of RuO2 allow us to carry on precise thermometry with a precision as good as pm 1mK at T = 2 K. To test the performance of our calorimeter, AC heat capacity and magnetocaloric effect for the spin-dimer compound Sr3Cr2O8 and the triangular lattice antiferromagnet RbFe(MoO4)2 are presented.
We have studied the magnetocaloric effect (MCE) in the shape-memory Heusler alloy Ni$_{50}$Mn$_{35}$In$_{15}$ by direct measurements in pulsed magnetic fields up to 6 and 20 T. The results in 6 T are compared with data obtained from heat-capacity exp
An approach to adjusting the conduction band population for tuning the magnetic and magnetocaloric response of EuO1-{delta} thin films through control of oxygen vacancies ({delta} = 0, 0.025, and 0.09) is presented. The films each showed a paramagnet
The compounds, PrCo9Si4 and NdCo9Si4, have been recently reported to exhibit first-order ferromagnetic transitions near 24 K. We have subjected this compound for further characterization by magnetization, heat-capacity and electrical resistivity meas
Applying a magnetic field to a ferromagnetic Ni$_{50}$Mn$_{34}$In$_{16}$ alloy in the martensitic state induces a structural phase transition to the austenitic state. This is accompanied by a strain which recovers on removing the magnetic field givin
Magneto-caloric effects (MCEs) measurement system in adiabatic condition is proposed to investigate the thermodynamic properties in pulsed magnetic fields up to 55 T. With taking the advantage of the fast field- sweep rate in pulsed field, adiabatic