ترغب بنشر مسار تعليمي؟ اضغط هنا

Cech and de Rham Cohomology of Integral Forms

172   0   0.0 ( 0 )
 نشر من قبل Pietro Antonio Grassi
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a study on the integral forms and their Cech/de Rham cohomology. We analyze the problem from a general perspective of sheaf theory and we explore examples in superprojective manifolds. Integral forms are fundamental in the theory of integration in supermanifolds. One can define the integral forms introducing a new sheaf containing, among other objects, the new basic forms delta(dtheta) where the symbol delta has the usual formal properties of Diracs delta distribution and acts on functions and forms as a Dirac measure. They satisfy in addition some new relations on the sheaf. It turns out that the enlarged sheaf of integral and ordinary superforms contains also forms of negative degree and, moreover, due to the additional relations introduced, its cohomology is, in a non trivial way, different from the usual superform cohomology.



قيم البحث

اقرأ أيضاً

91 - Benjamin Antieau 2018
We use the Beilinson $t$-structure on filtered complexes and the Hochschild-Kostant-Rosenberg theorem to construct filtrations on the negative cyclic and periodic cyclic homologies of a scheme $X$ with graded pieces given by the Hodge-completion of t he derived de Rham cohomology of $X$. Such filtrations have previously been constructed by Loday in characteristic zero and by Bhatt-Morrow-Scholze for $p$-complete negative cyclic and periodic cyclic homology in the quasisyntomic case.
For a natural number $m$, let $mathcal{S}_m/mathbb{F}_2$ be the $m$th Suzuki curve. We study the mod $2$ Dieudonn{e} module of $mathcal{S}_m$, which gives the equivalent information as the Ekedahl-Oort type or the structure of the $2$-torsion group s cheme of its Jacobian. We accomplish this by studying the de Rham cohomology of $mathcal{S}_m$. For all $m$, we determine the structure of the de Rham cohomology as a $2$-modular representation of the $m$th Suzuki group and the structure of a submodule of the mod $2$ Dieudonn{e} module. For $m=1$ and $2$, we determine the complete structure of the mod $2$ Dieudonn{e} module.
98 - Giuseppe Ruzzi 2004
We study sharply localized sectors, known as sectors of DHR-type, of a net of local observables, in arbitrary globally hyperbolic spacetimes with dimension $geq 3$. We show that these sectors define, has it happens in Minkowski space, a $mathrm{C}^*- $category in which the charge structure manifests itself by the existence of a tensor product, a permutation symmetry and a conjugation. The mathematical framework is that of the net-cohomology of posets according to J.E. Roberts. The net of local observables is indexed by a poset formed by a basis for the topology of the spacetime ordered under inclusion. The category of sectors, is equivalent to the category of 1-cocycles of the poset with values in the net. We succeed to analyze the structure of this category because we show how topological properties of the spacetime are encoded in the poset used as index set: the first homotopy group of a poset is introduced and it is shown that the fundamental group of the poset and the one of the underlying spacetime are isomorphic; any 1-cocycle defines a unitary representation of these fundamental groups. Another important result is the invariance of the net-cohomology under a suitable change of index set of the net.
We construct a cocycle model for complex analytic equivariant elliptic cohomology that refines Grojnowskis theory when the group is connected and Devotos when the group is finite. We then construct Mathai--Quillen type cocycles for equivariant ellipt ic Euler and Thom classes, explaining how these are related to positive energy representations of loop groups. Finally, we show that these classes give a unique equivariant refinement of Hopkins theorem of the cube construction of the ${rm MString}$-orientation of elliptic cohomology.
We explain how to construct a cohomology theory on the category of separated quasi-compact smooth rigid spaces over $mathbf{C}_p$ (or more general base fields), taking values in the category of vector bundles on the Fargues-Fontaine curve, which exte nds (in a suitable sense) Hyodo-Kato cohomology when the rigid space has a semi-stable proper formal model over the ring of integers of a finite extension of $mathbf{Q}_p$. This cohomology theory factors through the category of rigid analytic motives of Ayoub.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا