ﻻ يوجد ملخص باللغة العربية
We construct a cocycle model for complex analytic equivariant elliptic cohomology that refines Grojnowskis theory when the group is connected and Devotos when the group is finite. We then construct Mathai--Quillen type cocycles for equivariant elliptic Euler and Thom classes, explaining how these are related to positive energy representations of loop groups. Finally, we show that these classes give a unique equivariant refinement of Hopkins theorem of the cube construction of the ${rm MString}$-orientation of elliptic cohomology.
We construct a global geometric model for complex analytic equivariant elliptic cohomology for all compact Lie groups. Cocycles are specified by functions on the space of fields of the two-dimensional sigma model with background gauge fields and $mat
We present a calculation, which shows how the moduli of complex analytic elliptic curves arises naturally from the Borel cohomology of an extended moduli space of $U(1)$-bundles on a torus. Furthermore, we show how the analogous calculation, applied
For a natural number $m$, let $mathcal{S}_m/mathbb{F}_2$ be the $m$th Suzuki curve. We study the mod $2$ Dieudonn{e} module of $mathcal{S}_m$, which gives the equivalent information as the Ekedahl-Oort type or the structure of the $2$-torsion group s
We explain how to construct a cohomology theory on the category of separated quasi-compact smooth rigid spaces over $mathbf{C}_p$ (or more general base fields), taking values in the category of vector bundles on the Fargues-Fontaine curve, which exte
The title refers to the nilcommutative or $NC$-schemes introduced by M. Kapranov in math.AG/9802041. The latter are noncommutative nilpotent thickenings of commutative schemes. We consider also the parallel theory of nil-Poisson or $NP$-schemes, whic