ﻻ يوجد ملخص باللغة العربية
Image denoising is getting more significance, especially in Computed Tomography (CT), which is an important and most common modality in medical imaging. This is mainly due to that the effectiveness of clinical diagnosis using CT image lies on the image quality. The denoising technique for CT images using window-based Multi-wavelet transformation and thresholding shows the effectiveness in denoising, however, a drawback exists in selecting the closer windows in the process of window-based multi-wavelet transformation and thresholding. Generally, the windows of the duplicate noisy image that are closer to each window of original noisy image are obtained by the checking them sequentially. This leads to the possibility of missing out very closer windows and so enhancement is required in the aforesaid process of the denoising technique. In this paper, we propose a GA-based window selection methodology to include the denoising technique. With the aid of the GA-based window selection methodology, the windows of the duplicate noisy image that are very closer to every window of the original noisy image are extracted in an effective manner. By incorporating the proposed GA-based window selection methodology, the denoising the CT image is performed effectively. Eventually, a comparison is made between the denoising technique with and without the proposed GA-based window selection methodology.
Thresholding is an important task in image processing. It is a main tool in pattern recognition, image segmentation, edge detection and scene analysis. In this paper, we present a new thresholding technique based on two-dimensional Tsallis entropy. T
CT image quality is heavily reliant on radiation dose, which causes a trade-off between radiation dose and image quality that affects the subsequent image-based diagnostic performance. However, high radiation can be harmful to both patients and opera
Hyperspectral images (HSIs) have been widely applied in many fields, such as military, agriculture, and environment monitoring. Nevertheless, HSIs commonly suffer from various types of noise during acquisition. Therefore, denoising is critical for HS
Image inpainting aims to complete the missing or corrupted regions of images with realistic contents. The prevalent approaches adopt a hybrid objective of reconstruction and perceptual quality by using generative adversarial networks. However, the re
When smartphone cameras are used to take photos of digital screens, usually moire patterns result, severely degrading photo quality. In this paper, we design a wavelet-based dual-branch network (WDNet) with a spatial attention mechanism for image dem