ﻻ يوجد ملخص باللغة العربية
QCD lattice simulations with 2+1 flavours typically start at rather large up-down and strange quark masses and extrapolate first the strange quark mass to its physical value and then the up-down quark mass. An alternative method of tuning the quark masses is discussed here in which the singlet quark mass is kept fixed, which ensures that the kaon always has mass less than the physical kaon mass. It can also take into account the different renormalisations (for singlet and non-singlet quark masses) occurring for non-chirally invariant lattice fermions and so allows a smooth extrapolation to the physical quark masses. This procedure enables a wide range of quark masses to be probed, including the case with a heavy up-down quark mass and light strange quark mass. Results show the correct order for the baryon octet and decuplet spectrum and an extrapolation to the physical pion mass gives mass values to within a few percent of their experimental values.
The explicit breaking of chiral symmetry of the Wilson fermion action results in additive quark mass renormalization. Moreover, flavour singlet and non-singlet scalar currents acquire different renormalization constants with respect to continuum regu
Contributions of strange quarks to the mass and spin of the nucleon, characterized by the observables f_Ts and Delta s, respectively, are investigated within lattice QCD. The calculation employs a 2+1-flavor mixed-action lattice scheme, thus treating
QCD lattice simulations with 2+1 flavours typically start at rather large up-down and strange quark masses and extrapolate first the strange quark mass to its physical value and then the up-down quark mass. An alternative method of tuning the quark m
We determine the strange quark condensate from lattice QCD for the first time and compare its value to that of the light quark and chiral condensates. The results come from a direct calculation of the expectation value of the trace of the quark propa
We compute the strange quark mass $m_s$ and the average of the $u$ and $d$ quark masses $hat m$ using full lattice QCD with three dynamical quarks combined with experimental values for the pion and kaon masses. The simulations have degenerate $u$ and