ﻻ يوجد ملخص باللغة العربية
We compute the strange quark mass $m_s$ and the average of the $u$ and $d$ quark masses $hat m$ using full lattice QCD with three dynamical quarks combined with experimental values for the pion and kaon masses. The simulations have degenerate $u$ and $d$ quarks with masses $m_u=m_dequiv hat m$ as low as $m_s/8$, and two different values of the lattice spacing. The bare lattice quark masses obtained are converted to the $msbar$ scheme using perturbation theory at $O(alpha_s)$. Our results are: $m_s^msbar$(2 GeV) = 76(0)(3)(7)(0) MeV, $hat m^msbar$(2 GeV) = 2.8(0)(1)(3)(0) MeV and $m_s/hat m$ = 27.4(1)(4)(0)(1), where the errors are from statistics, simulation, perturbation theory, and electromagnetic effects, respectively.
We determine the strange and light quark condensates in full lattice QCD for the first time. This is done by direct calculation of the expectation value of the trace of the quark propagator followed by subtraction of the appropriate perturbative cont
We determine the strange quark condensate from lattice QCD for the first time and compare its value to that of the light quark and chiral condensates. The results come from a direct calculation of the expectation value of the trace of the quark propa
We calculate the light meson spectrum and the light quark masses by lattice QCD simulation, treating all light quarks dynamically and employing the Iwasaki gluon action and the nonperturbatively O(a)-improved Wilson quark action. The calculations are
We calculate the up-, down-, strange-, charm-, and bottom-quark masses using the MILC highly improved staggered-quark ensembles with four flavors of dynamical quarks. We use ensembles at six lattice spacings ranging from $aapprox0.15$~fm to $0.03$~fm
Matrix elements of six-quark operators are needed to extract new physics constraints from experimental searches for neutron-antineutron oscillations. This work presents in detail the first lattice quantum chromodynamics calculations of the necessary