ﻻ يوجد ملخص باللغة العربية
Recent studies of scattering amplitudes in planar N=4 SYM theory revealed the existence of a hidden dual superconformal symmetry. Together with the conventional superconformal symmetry it gives rise to powerful restrictions on the planar scattering amplitudes to all loops. We study the general form of the invariants of both symmetries. We first construct an integral representation for the most general dual superconformal invariants and show that it allows a considerable freedom in the choice of the integration measure. We then perform a half-Fourier transform to twistor space, where conventional conformal symmetry is realized locally, derive the resulting conformal Ward identity for the integration measure and show that it admits a unique solution. Thus, the combination of dual and conventional superconformal symmetries, together with invariance under helicity rescalings, completely fixes the form of the invariants. The expressions obtained generalize the known tree and one-loop superconformal invariants and coincide with the recently proposed coefficients of the leading singularities of the scattering amplitudes as contour integrals over Grassmannians.
We argue that the scattering amplitudes in the maximally supersymmetric N=4 super-Yang-Mills theory possess a new symmetry which extends the previously discovered dual conformal symmetry. To reveal this property we formulate the scattering amplitudes
We perform the twistor (half-Fourier) transform of all tree n-particle superamplitudes in N=4 SYM and show that it has a transparent geometric interpretation. We find that the N^kMHV amplitude is supported on a set of (2k+1) intersecting lines in twi
We give an explicit formula for all tree amplitudes in N=4 SYM, derived by solving the recently presented supersymmetric tree-level recursion relations. The result is given in a compact, manifestly supersymmetric form and we show how to extract from
Very recently in arXiv:0705.0303 Alday and Maldacena gave a string theory prescription for computing (all) planar amplitudes in N=4 supersymmetric gauge theory at strong coupling using the AdS/CFT correspondence. These amplitudes are determined by a
Superconformal indices (SCIs) of 4d ${mathcal N}=4$ SYM theories with simple gauge groups are described in terms of elliptic hypergeometric integrals. For $F_4, E_6, E_7, E_8$ gauge groups this yields first examples of integrals of such type. S-duali