ﻻ يوجد ملخص باللغة العربية
By using the numerically exact density-matrix renormalization group (DMRG) approach, we investigate the ground states of harmonically trapped one-dimensional (1D) fermions with population imbalance and find that the Larkin-Ovchinnikov (LO) state, which is a condensed state of fermion pairs with nonzero center-of-mass momentum, is realized for a wide range of parameters. The phase diagram comprising the two phases of i) an LO state at the trap center and a balanced condensate at the periphery and ii) an LO state at the trap center and a pure majority component at the periphery, is obtained. The reduced two-body density matrix indicates that most of the minority atoms contribute to the LO-type quasi-condensate. With the time-dependent DMRG, we also investigate the real-time dynamics of a system of 1D fermions in response to a spin-flip excitation.
We elucidate universal many-body properties of a one-dimensional, two-component ultracold Fermi gas near the $p$-wave Feshbach resonance. The low-energy scattering in this system can be characterized by two parameters, that is, $p$-wave scattering le
We present a systematic investigation of attractive binary mixtures in presence of both spin- and mass-imbalance in one dimensional setups described by the Hubbard model. After discussing typical cold atomic experimental realizations and the relation
We calculate the density profiles of a trapped spin-imbalanced Fermi gas with attractive interactions in a one-dimensional optical lattice, using both the local density approximation (LDA) and density matrix renormalization group (DMRG) simulations.
We theoretically study dilute superfluidity of spin-1 bosons with antiferromagnetic interactions and synthetic spin-orbit coupling (SOC) in a one-dimensional lattice. Employing a combination of density matrix renormalization group and quantum field t
We investigate the ground state properties of anti-ferromagnetic spin-1 Bose gases in one dimensional harmonic potential from the weak repulsion regime to the strong repulsion regime. By diagonalizing the Hamiltonian in the Hilbert space composed of