ﻻ يوجد ملخص باللغة العربية
We elucidate universal many-body properties of a one-dimensional, two-component ultracold Fermi gas near the $p$-wave Feshbach resonance. The low-energy scattering in this system can be characterized by two parameters, that is, $p$-wave scattering length and effective range. At the unitarity limit where the $p$-wave scattering length diverges and the effective range is reduced to zero without conflicting with the causality bound, the system obeys universal thermodynamics as observed in a unitary Fermi gas with contact $s$-wave interaction in three dimensions. It is in contrast to a Fermi gas with the $p$-wave resonance in three dimensions in which the effective range is inevitably finite. We present the universal equation of state in this unitary $p$-wave Fermi gas within the many-body $T$-matrix approach as well as the virial expansion method. Moreover, we examine the single-particle spectral function in the high-density regime where the virial expansion is no longer valid. On the basis of the Hartree-like self-energy shift at the divergent scattering length, we conjecture that the equivalence of the Bertsch parameter across spatial dimensions holds even for a one-dimensional unitary $p$-wave Fermi gas.
We study attractively interacting fermions on a square lattice with dispersion relations exhibiting strong spin-dependent anisotropy. The resulting Fermi surface mismatch suppresses the s-wave BCS-type instability, clearing the way for unconventional
Interacting Fermi gas provides an ideal model system to understand unconventional pairing and intertwined orders relevant to a large class of quantum materials. Rydberg-dressed Fermi gas is a recent experimental system where the sign, strength, and r
We investigate a polaronic excitation in a one-dimensional spin-1/2 Fermi gas with contact attractive interactions, using the complex Langevin method, which is a promising approach to evade a possible sign problem in quantum Monte Carlo simulations.
Expansion dynamics of interacting fermions in a lattice are simulated within the one-dimensional (1D) Hubbard model, using the essentially exact time-evolving block decimation (TEBD) method. In particular, the expansion of an initial band-insulator s
Strongly correlated systems are often associated with an underlying quantum critical point which governs their behavior in the finite temperature phase diagram. Their thermodynamical and transport properties arise from critical fluctuations and follo