ترغب بنشر مسار تعليمي؟ اضغط هنا

Incommensurate spin-density wave and magnetic lock-in transition in CaFe4As3

264   0   0.0 ( 0 )
 نشر من قبل Pascal Manuel
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The magnetic structure for the newly discovered iron-arsenide compound CaFeAs has been studied by neutron powder diffraction. Long-range magnetic order is detected below 85K, with an incommensurate modulation described by the propagation vector k=(0,$delta$,0), $deltasim$ 0.39. Below $sim$ 25K, our measurements detect a first-order phase transition where $delta$ locks into the commensurate value 3/8. A model of the magnetic structure is proposed for both temperature regimes, based on Rietveld refinements of the powder data and symmetry considerations. The structures correspond to longitudinal spin-density-waves with magnetic moments directed along the textit{b}-axis. A Landau analysis captures the change in thermodynamic quantities observed at the two magnetic transitions, in particular the drop in resistivity at the lock-in transition.



قيم البحث

اقرأ أيضاً

The presence of incommensurate spiral spin-density waves (SDW) has been proposed to explain the $p$ (hole doping) to $1+p$ jump measured in the Hall number $n_H$ at a doping $p^*$. Here we explore {it collinear} incommensurate SDW as another possible explanation of this phenomenon, distinct from the incommensurate {it spiral} SDW proposal. We examine the effect of different SDW strengths and wavevectors and we find that the $n_Hsim p$ behavior is hardly reproduced at low doping. The calculated $n_H$ and Fermi surfaces give characteristic features that should be observed, thus the lack of these features in experiment suggests that the incommensurate collinear SDW is unlikely to be a good candidate to explain the $n_Hsim p$ observed in the pseudogap regime.
57Fe Mossbauer spectroscopy measurements are presented in the underdoped Ba(Fe{1-x}Cox)2As2 series for x=0.014 (T_c < 1.4K) and x=0.03 and 0.045 (T_c ~ 2 and 12K respectively). The spectral shapes in the so-called spin-density wave (SDW) phase are in terpreted in terms of incommensurate modulation of the magnetic structure, and allow the shape of the modulation to be determined. In undoped BaFe2As2, the magnetic structure is commensurate, and we find that incommensurability is present at the lowest doping level (x=0.014). As Co doping increases, the low temperature modulation progressively loses its squaredness and tends to a sine-wave. The same trend occurs for a given doping level, as temperature increases. We find that a magnetic hyperfine component persists far above the SDW transition, its intensity being progressively tranferred to a paramagnetic component on heating.
In the metallic magnet Nb$_{1-y}$Fe$_{2+y}$, the low temperature threshold of ferromagnetism can be investigated by varying the Fe excess $y$ within a narrow homogeneity range. We use elastic neutron scattering to track the evolution of magnetic orde r from Fe-rich, ferromagnetic Nb$_{0.981}$Fe$_{2.019}$ to approximately stoichiometric NbFe$_2$, in which we can, for the first time, characterise a long-wavelength spin density wave state burying a ferromagnetic quantum critical point. The associated ordering wavevector $mathbf{q}_{rm SDW}=$(0,0,$l_{rm SDW}$) is found to depend significantly on $y$ and $T$, staying finite but decreasing as the ferromagnetic state is approached. The phase diagram follows a two order-parameter Landau theory, for which all the coefficients can now be determined. Our findings suggest that the emergence of SDW order cannot be attributed to band structure effects alone. They indicate a common microscopic origin of both types of magnetic order and provide strong constraints on related theoretical scenarios based on, e.g., quantum order by disorder.
The energy and momentum selectivity of time- and angle-resolved photoemission spectroscopy is exploited to address the ultrafast dynamics of the antiferromagnetic spin density wave (SDW) transition photoexcited in epitaxial thin films of chromium. We are able to quantitatively extract the evolution of the SDW order parameter $Delta$ through the ultrafast phase transition. $Delta$ is defined by the transient temperature of the thermalized electron gas. The complete destruction of SDW order on a sub-100~fs time scale is observed, much faster than for conventional charge density wave materials. Our results reveal that equilibrium concepts for phase transitions such as the order parameter may be utilized even in the strongly non-adiabatic regime of ultrafast photo-excitation.
Neutron diffraction studies of Ba(Fe[1-x]Co[x])2As2 reveal that commensurate antiferromagnetic order gives way to incommensurate magnetic order for Co compositions between 0.056 < x < 0.06. The incommensurability has the form of a small transverse sp litting (0, +-e, 0) from the nominal commensurate antiferromagnetic propagation vector Q[AFM] = (1, 0, 1) (in orthorhombic notation) where e = 0.02-0.03 and is composition dependent. The results are consistent with the formation of a spin-density wave driven by Fermi surface nesting of electron and hole pockets and confirm the itinerant nature of magnetism in the iron arsenide superconductors.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا