ترغب بنشر مسار تعليمي؟ اضغط هنا

Incommensurate spin density wave in Co-doped BaFe2As2

168   0   0.0 ( 0 )
 نشر من قبل Pierre Bonville
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

57Fe Mossbauer spectroscopy measurements are presented in the underdoped Ba(Fe{1-x}Cox)2As2 series for x=0.014 (T_c < 1.4K) and x=0.03 and 0.045 (T_c ~ 2 and 12K respectively). The spectral shapes in the so-called spin-density wave (SDW) phase are interpreted in terms of incommensurate modulation of the magnetic structure, and allow the shape of the modulation to be determined. In undoped BaFe2As2, the magnetic structure is commensurate, and we find that incommensurability is present at the lowest doping level (x=0.014). As Co doping increases, the low temperature modulation progressively loses its squaredness and tends to a sine-wave. The same trend occurs for a given doping level, as temperature increases. We find that a magnetic hyperfine component persists far above the SDW transition, its intensity being progressively tranferred to a paramagnetic component on heating.



قيم البحث

اقرأ أيضاً

Neutron diffraction studies of Ba(Fe[1-x]Co[x])2As2 reveal that commensurate antiferromagnetic order gives way to incommensurate magnetic order for Co compositions between 0.056 < x < 0.06. The incommensurability has the form of a small transverse sp litting (0, +-e, 0) from the nominal commensurate antiferromagnetic propagation vector Q[AFM] = (1, 0, 1) (in orthorhombic notation) where e = 0.02-0.03 and is composition dependent. The results are consistent with the formation of a spin-density wave driven by Fermi surface nesting of electron and hole pockets and confirm the itinerant nature of magnetism in the iron arsenide superconductors.
366 - F. Kurth , K. Iida , S. Trommler 2012
Superconducting and normal state transport properties in iron pnictides are sensitive to disorder and impurity scattering. By investigation of Ba(Fe1-xCox)2As2 thin films with varying Co concentration, we demonstrate that in the dirty limit the super conducting dome in the electronic phase diagram of Ba(Fe1-xCox)2As2 shifts towards lower doping concentrations, which differs significantly from observations in single crystals. We show that especially in the underdoped regime superconducting transition temperatures higher than 27 K are possible.
Thermal transport measurements have been performed on single-crystalline Co-doped BaFe2As2 down to 0.1 K and under magnetic fields up to 7 T. Significant peak anomalies are observed in both thermal conductivity and thermal Hall conductivity below Tc as an indication of the enhancement of the quasiparticle mean-free path. Moreover, we find a sizable residual T-linear term in thermal conductivity, possibly due to a finite quasiparticle density of states in the superconducting gap induced by impurity pair breaking. Our findings support a pairing symmetry compatible with the theoretically predicted sign-reversing s-wave state.
168 - S. Ibuka , Y. Nambu , T. Yamazaki 2014
Antiferromagnetic spin fluctuations were investigated in the normal states of the parent ($x = 0$), under-doped ($x = 0.04$) and optimally-doped ($x = 0.06$) Ba(Fe$_{1-x}$Co$_x$)$_2$As$_2$ single crystals using inelastic neutron scattering technique. For all the doping levels, quasi-two-dimensional antiferromagnetic fluctuations were observed as a broad peak localized at ${it Q} = (1/2, 1/2, l)$. At lower energies, the peak shows an apparent anisotropy in the $hk0$ plane; longitudinal peak widths are considerably smaller than transverse widths. The anisotropy is larger for the higher doping level. These results are consistent with the random phase approximation (RPA) calculations taking account of the orbital character of the electronic bands, confirming that the anisotropic nature of the spin fluctuations in the normal states is mostly dominated by the nesting of Fermi surfaces. On the other hand, the quasi-two-dimensional spin correlations grow much rapidly for decreasing temperature in the $x = 0$ parent compound, compared to that expected for nearly antiferromagnetic metals. This may be another sign of the unconventional nature of the antiferromagnetic transition in BaFe$_2$As$_2$.
121 - C. Tarantini , S. Lee , Y. Zhang 2010
We report measurements of the field and angular dependences of Jc of truly epitaxial Co-doped BaFe2As2 thin films grown on SrTiO3/(La,Sr)(Al,Ta)O3 with different SrTiO3 template thicknesses. The films show Jc comparable to Jc of single crystals and a maximum pinning force Fp(0.6Tc) > 5 GN/m3 at H/Hirr ~ 0.5 indicative of strong vortex pinning effective up to high fields. Due to the strong correlated c-axis pinning, Jc for field along the c-axis exceeds Jc for H//ab plane, inverting the expectation of the Hc2 anisotropy. HRTEM reveals that the strong vortex pinning is due to a high density of nanosize columnar defects.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا