ترغب بنشر مسار تعليمي؟ اضغط هنا

Deriving the pattern speed using dynamical modelling of gas flows in barred galaxies

118   0   0.0 ( 0 )
 نشر من قبل Enrico Maria Corsini
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English
 تأليف I. Perez




اسأل ChatGPT حول البحث

In this paper we analyse the methodology to derive the bar pattern speed from dynamical simulations. The results are robust to the changes in the vertical-scale height and in the mass-to-light (M/L) ratios. There is a small range of parameters for which the kinematics can be fitted. We have also taken into account the use of different type of dynamical modelling and the effect of using 2-D vs 1-D models in deriving the pattern speeds. We conclude that the derivation of the bar streaming motions and strength and position of shocks is not greatly affected by the fluid dynamical model used. We show new results on the derivation of the pattern speed for NGC 1530. The best fit pattern speed is around 10 km/s/kpc, which corresponds to a R_cor/R_bar = 1.4, implying a slower bar than previously derived from more indirect assumptions. With this pattern speed, the global and most local kinematic features are beautifully reproduced. However, the simulations fail to reproduce the velocity gradients close to some bright HII regions in the bar. We have shown from the study of the Halpha equivalent widths that the HII regions that are located further away from the bar dust-lane in its leading side, downstream from the main bar dust-lane, are older than the rest by 1.5-2.5 Myr. In addition, a clear spatial correlation was found between the location of HII regions, dust spurs on the trailing side of the bar dust-lane, and the loci of maximum velocity gradients parallel to the bar major axis.



قيم البحث

اقرأ أيضاً

We investigate the relations between the properties of bars and their host galaxies in a sample of 77 nearby barred galaxies, spanning a wide range of morphological types and luminosities, with 34 SB0-SBa and 43 SBab-SBc galaxies. The sample includes all the galaxies with reliable direct measurement of their bar pattern speed based on long-slit or integral-field stellar spectroscopy using the Tremaine-Weinberg method. We limited our analysis to the galaxies with a relatively small relative error on the bar pattern speed (smaller than 50 per cent) and not hosting an ultrafast bar. For each galaxy, we collected the radius, strength, pattern speed, corotation radius, and rotation rate for the bar and we also collected the Hubble type and absolute SDSS r-band magnitude. We also used literature bulge-to-total luminosity ratio for a subsample of 53 galaxies with an available photometric decomposition. We confirmed earlier observational findings that longer bars rotate with lower bar pattern speeds, shorter bars are weaker, and bars with a small bar rotation rate rotate with higher bar pattern speeds and have smaller corotation radii. In addition, we found that stronger bars rotate with lower bar pattern speeds, as predicted from the interchange of angular momentum during bar evolution, which in turn may depend on different galaxy properties. Moreover, we report that brighter galaxies host longer bars, which rotate with lower bar pattern speeds and have larger corotation radii. This result is in agreement with a scenario of downsizing in bar formation, if more massive galaxies formed earlier and had sufficient time to slow down, grow in length, and push corotation outwards.
Based on a high quality $N$-body simulation of a double bar galaxy model, we investigate the evolution of the bar properties, including their size, strength and instantaneous pattern speed derived by using three distinct methods: the Fourier, Jacobi integral, and moment of inertia methods. The interaction of the two bars, which rotate at distinct speeds, primarily affects the size, strength and pattern speed of the inner bar. When the two bars are perpendicular to each other, the size and the pattern speed of the inner bar decrease and its strength increases. The emergence of a strong Fourier $m=1$ mode increases the oscillation amplitude of the size, strength and pattern speed of the inner bar. On the other hand, the characteristics of the outer bar are substantially influenced by its adjacent spiral structure. When the spiral structure disappears, the size of the outer bar increases and its strength and pattern speed decrease. Consequently, the ratio of the pattern speed of the outer bar with respect to the inner bar is not constant and increases with time. Overall, the double bar and disk system displays substantial high frequency semi-chaotic fluctuations of the pattern strengths and speeds both in space and time, superposed on the slow secular evolution, which invalidates the assumption that the actions of individual stars should be well conserved in barred galaxies, such as the Milky Way.
60 - V. Cuomo 2019
We aim at investigating the formation process of weak bars by measuring their properties in a sample of 29 nearby SAB galaxies, spanning a wide range of morphological types and luminosities. The sample galaxies were selected to have an intermediate i nclination, a bar at an intermediate angle between the disc minor and major axes, and an undisturbed morphology and kinematics to allow the direct measurement of the bar pattern speed. Combining our analysis with previous studies, we compared the properties of weak and strong bars. We measured the bar radius and strength from the r-band images available in SDSS and bar pattern speed and corotation radius from the stellar kinematics obtained by CALIFA. We derived the bar rotation rate as the ratio between the corotation and bar radii. Thirteen out of 29 galaxies, which were morphologically classified as SABs from a visual inspection, do not actually host a bar component or their central elongated component is not in rigid rotation. We successfully derived the bar pattern speed in 16 objects. Two of them host an ultrafast bar. Using the bar strength to differentiate weak and strong bars, we found that the SABs host shorter bars with smaller corotation radii than their strongly barred counterparts. Weak and strong bars have similar bar pattern speeds and rotation rates, which are all consistent with being fast. We did not observe any difference between the bulge prominence in SAB and SB galaxies, whereas nearly all the weak bars reside in the disc inner parts, contrary to strong bars. We ruled out that the bar weakening is only related to the bulge prominence and that the formation of weak bars is triggered by the tidal interaction with a companion. Our observational results suggest that weak bars may be evolved systems exchanging less angular momentum with other galactic components than strong bars.
The dynamical mass (M_dyn) is a key property of any galaxy, yet a determination of M_dyn is not straight-forward if spatially resolved measurements are not available. This situation occurs in single-dish HI observations of the local universe, but als o frequently in high-redshift observations. M_dyn-measurements in high-redshift galaxies are commonly obtained through observations of the CO line, the most abundant tracer of the molecular medium. Even though the CO linewidth can in most cases be determined with reasonable accuracy, a measurement of the size of the emitting region is typically challenging given current facilities. We show how the integrated spectra (`global profiles) of a variety of galaxy models depend on the spatial distribution of the tracer gas as well as its velocity dispersion. We demonstrate that the choice of tracer emission line significantly affects the shape of the global profiles. In particular, in the case of high (~50 kms-1) velocity dispersions, compact tracers (such as CO) result in Gaussian-like (non-double-horned) profiles, as is indeed frequently seen in high-redshift observations. We determine at which radii the rotation curve reaches the rotation velocity corresponding to the velocity width, and find that for each tracer this happens at a well-defined radius: HI velocity widths typically originate at ~5 optical scale lengths, while CO velocity widths trace the rotation velocity at ~2 scale lengths. We additionally explore other distributions to take into account that CO distributions at high redshift likely differ from those at low redshift. Our models, while not trying to reproduce individual galaxies, define characteristic radii that can be used in conjunction with the measured velocity widths in order to define dynamical masses consistent with the assumed gas distribution.
We construct a large set of dynamical models of the galactic bulge, bar and inner disk using the Made-to-Measure method. Our models are constrained to match the red clump giant density from a combination of the VVV, UKIDSS and 2MASS infrared surveys together with stellar kinematics in the bulge from the BRAVA and OGLE surveys, and in the entire bar region from the ARGOS survey. We are able to recover the bar pattern speed and the stellar and dark matter mass distributions in the bar region, thus recovering the entire galactic effective potential. We find a bar pattern speed of $39.0 pm 3.5 ,rm{km,s^{-1},kpc^{-1}}$, placing the bar corotation radius at $6.1 pm 0.5 rm{kpc}$ and making the Milky Way bar a typical fast rotator. We evaluate the stellar mass of the long bar and bulge structure to be $M_{rm{bar/bulge}} = 1.88 pm 0.12 times 10^{10} , rm{M}_{odot}$, larger than the mass of disk in the bar region, $M_{rm{inner disk}} = 1.29pm0.12 times 10^{10} , rm{M}_{odot}$. The total dynamical mass in the bulge volume is $1.85pm0.05times 10^{10} , rm{M}_{odot}$. Thanks to more extended kinematic data sets and recent measurement of the bulge IMF our models have a low dark matter fraction in the bulge of $17%pm2%$. We find a dark matter density profile which flattens to a shallow cusp or core in the bulge region. Finally, we find dynamical evidence for an extra central mass of $sim0.2times10^{10} ,rm{M}_{odot}$, probably in a nuclear disk or disky pseudobulge.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا