ﻻ يوجد ملخص باللغة العربية
We construct a large set of dynamical models of the galactic bulge, bar and inner disk using the Made-to-Measure method. Our models are constrained to match the red clump giant density from a combination of the VVV, UKIDSS and 2MASS infrared surveys together with stellar kinematics in the bulge from the BRAVA and OGLE surveys, and in the entire bar region from the ARGOS survey. We are able to recover the bar pattern speed and the stellar and dark matter mass distributions in the bar region, thus recovering the entire galactic effective potential. We find a bar pattern speed of $39.0 pm 3.5 ,rm{km,s^{-1},kpc^{-1}}$, placing the bar corotation radius at $6.1 pm 0.5 rm{kpc}$ and making the Milky Way bar a typical fast rotator. We evaluate the stellar mass of the long bar and bulge structure to be $M_{rm{bar/bulge}} = 1.88 pm 0.12 times 10^{10} , rm{M}_{odot}$, larger than the mass of disk in the bar region, $M_{rm{inner disk}} = 1.29pm0.12 times 10^{10} , rm{M}_{odot}$. The total dynamical mass in the bulge volume is $1.85pm0.05times 10^{10} , rm{M}_{odot}$. Thanks to more extended kinematic data sets and recent measurement of the bulge IMF our models have a low dark matter fraction in the bulge of $17%pm2%$. We find a dark matter density profile which flattens to a shallow cusp or core in the bulge region. Finally, we find dynamical evidence for an extra central mass of $sim0.2times10^{10} ,rm{M}_{odot}$, probably in a nuclear disk or disky pseudobulge.
We compare distance resolved, absolute proper motions in the Milky Way bar/bulge region to a grid of made-to-measure dynamical models with well defined pattern speeds. The data are obtained by combining the relative VVV Infrared Astrometric Catalog v
Gas morphology and kinematics in the Milky Way contain key information for understanding the formation and evolution of our Galaxy. We present a high resolution hydrodynamical simulation based on a realistic barred Milky Way potential constrained by
We investigate the inner regions of the Milky Way with a sample of unprecedented size and coverage thanks to APOGEE DR16 and {it Gaia} DR3 data. Our inner Galactic sample has more than 26,000 stars within $|X_{rm Gal}| <5$ kpc, $|Y_{rm Gal}| <3.5$ kp
Numerous studies of integrated starlight, stellar counts, and kinematics have confirmed that the Milky Way is a barred galaxy. However, far fewer studies have investigated the bars stellar population properties, which carry valuable independent infor
We re-analyse photometric near-infrared data in order to investigate why it is so hard to get a consensus for the shape and density law of the bulge, as seen from the literature. To solve the problem we use the Besancon Galaxy Model to provide a sche