ﻻ يوجد ملخص باللغة العربية
We present comparison of numerical simulations of propagation of MHD waves,excited by subphotospheric perturbations, in two different (deep and shallow) magnetostatic models of the sunspots. The deep sunspot model distorts both the shape of the wavefront and its amplitude stronger than the shallow model. For both sunspot models, the surface gravity waves (f-mode) are affected by the sunspots stronger than the acoustic p-modes. The wave amplitude inside the sunspot depends on the photospheric strength of the magnetic field and the distance of the source from the sunspot axis. For the source located at 9 Mm from the center of the sunspot, the wave amplitude increases when the wavefront passes through the central part of the sunspot. For the source distance of 12 Mm, the wave amplitude inside the sunspot is always smaller than outside. For the same source distance from the sunspot center but for the models with different strength of the magnetic field, the wave amplitude inside the sunspot increases with the strength of the magnetic field. The simulations show that unlike the case of the uniform inclined background magnetic field, the p- and f-mode waves are not spatially separated inside the sunspot where the magnetic field is strongly non-uniform. These properties have to be taken into account for interpretation of observations of MHD waves traveling through sunspot regions.
The review addresses the spatial frequency morphology of sources of sunspot oscillations and waves, including their localization, size, oscillation periods, height localization with the mechanism of cut-off frequency that forms the observed emission
It is shown that stationary vortex structures can be excited in a ferrite film. This is the first proposal for creating vortex structures in the important cm and mm wavelength ranges. It is shown that both linear and nonlinear structures can be excit
We use 2D numerical simulations and eikonal approximation, to study properties of MHD waves traveling below the solar surface through the magnetic structure of sunspots. We consider a series of magnetostatic models of sunspots of different magnetic f
Recent experimental work has demonstrated optical control of spin wave emission by tuning the shape of the optical pulse (Satoh et al. Nature Photonics, 6, 662 (2012)). We reproduce these results and extend the scope of the control by investigating n
Starting from a general relativistic framework a hydrodynamic formalism is derived that yields the mean-square amplitudes and rms surface velocities of normal modes of non-relativistic stars excited by arbitrary gravitational wave (GW) radiation. In