ترغب بنشر مسار تعليمي؟ اضغط هنا

Excitation of stellar oscillations by gravitational waves: hydrodynamic model and numerical results for the Sun

150   0   0.0 ( 0 )
 نشر من قبل Daniel Siegel
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Starting from a general relativistic framework a hydrodynamic formalism is derived that yields the mean-square amplitudes and rms surface velocities of normal modes of non-relativistic stars excited by arbitrary gravitational wave (GW) radiation. In particular, stationary GW fields are considered and the resulting formulae are evaluated for two general types of GW radiation: radiation from a particular astrophysical source (e.g., a binary system) and a stochastic background of gravitational waves (SBGW). Expected sources and signal strengths for both types of GW radiation are reviewed and discussed. Numerical results for the Sun show that low-order quadrupolar g modes are excited more strongly than p modes by orders of magnitude. Maximal rms surface velocities in the case of excitation by astrophysical sources are found to be v {le} 10^(-8) mm/s, assuming GW strain amplitudes of h {le} 10^(-20). It is shown that current models for an SBGW produced by cosmic strings, with Omega_GW ~ 10^(-8)-10^(-5) in the frequency range of solar g modes, are able to produce maximal solar g-mode rms surface velocities of 10^(-5)-10^(-3) mm/s. This result lies close to or within the amplitude range of 10^(-3)-1 mm/s expected from excitation by turbulent convection, which is currently considered to be responsible for stellar g-mode excitation. It is concluded that studying g-mode observations of stars other than the Sun, in which excitation by GWs could be even more effective due to different stellar structures, might provide a new method to either detect GWs or to deduce a significant direct upper limit on an SBGW at intermediate frequencies between the pulsar bound and the bounds from interferometric detectors on Earth.



قيم البحث

اقرأ أيضاً

Five-minutes oscillations is one of the basic properties of solar convection. Observations show mixture of a large number of acoustic wave fronts propagating from their sources. We investigate the process of acoustic waves excitation from the point o f view of individual events, by using realistic 3D radiative hydrodynamic simulation of the quiet Sun. The results show that the excitation events are related to dynamics vortex tubes (or swirls) in the intergranular lanes. These whirlpool-like flows are characterized by very strong horizontal velocities (7 - 11 km/s) and downflows (~ 7 km/s), and are accompanied by strong decreases of the temperature, density and pressure at the surface and in a ~ 0.5-1 Mm deep layer below the surface. High-speed whirlpool flows can attract and capture other vortices. According to our simulation results, the processes of the vortex interaction, such as vortex annihilation, can cause the excitation of acoustic waves.
When gravitational waves pass through the nuclear star clusters of galactic lenses, they may be microlensed by the stars. Such microlensing can cause potentially observable beating patterns on the waveform due to waveform superposition and magnify th e signal. On the one hand, the beating patterns and magnification could lead to the first detection of a microlensed gravitational wave. On the other hand, microlensing introduces a systematic error in strong lensing use-cases, such as localization and cosmography studies. We show that diffraction effects are important when we consider GWs in the LIGO frequency band lensed by objects with masses $lesssim 100 , rm M_odot$. We also show that the galaxy hosting the microlenses changes the lensing configuration qualitatively, so we cannot treat the microlenses as isolated point mass lenses when strong lensing is involved. We find that for stellar lenses with masses $sim 1 , rm M_odot$, diffraction effects significantly suppress the microlensing magnification. Thus, our results suggest that gravitational waves lensed by typical galaxy or galaxy cluster lenses may offer a relatively clean environment to study the lens system, free of contamination by stellar lenses. We discuss potential implications for the strong lensing science case. More complicated microlensing configurations will require further study.
172 - J. Aasi , J. Abadie , B. P. Abbott 2013
We present the results of searches for gravitational waves from a large selection of pulsars using data from the most recent science runs (S6, VSR2 and VSR4) of the initial generation of interferometric gravitational wave detectors LIGO (Laser Interf erometric Gravitational-wave Observatory) and Virgo. We do not see evidence for gravitational wave emission from any of the targeted sources but produce upper limits on the emission amplitude. We highlight the results from seven young pulsars with large spin-down luminosities. We reach within a factor of five of the canonical spin-down limit for all seven of these, whilst for the Crab and Vela pulsars we further surpass their spin-down limits. We present new or updated limits for 172 other pulsars (including both young and millisecond pulsars). Now that the detectors are undergoing major upgrades, and, for completeness, we bring together all of the most up-to-date results from all pulsars searched for during the operations of the first-generation LIGO, Virgo and GEO600 detectors. This gives a total of 195 pulsars including the most recent results described in this paper.
The characteristic and distinctive features of the visibility amplitude of interferometric observations for compact objects like stars in the immediate vicinity of the central black hole in our Galaxy are considered. These features are associated wit h the specifics of strong gravitational scattering of point sources by black holes, wormholes, or black_white holes. The revealed features will help to determine the most important topological characteristics of the central object in our Galaxy: whether this object possesses the properties of only a black hole or also has characteristics unique to wormholes or black_white holes. These studies can be used to interpret the results of optical, infrared, and radio interferometric observations.
140 - Marc van der Sluys 2011
In this review, I give a summary of the history of our understanding of gravitational waves and how compact binaries were used to transform their status from mathematical artefact to physical reality. I also describe the types of compact (stellar) bi naries that LISA will observe as soon as it is switched on. Finally, the status and near future of LIGO, Virgo and GEO are discussed, as well as the expected detection rates for the Advanced detectors, and the accuracies with which binary parameters can be determined when BH/NS inspirals are detected.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا