ترغب بنشر مسار تعليمي؟ اضغط هنا

Potential barrier lowering and electrical transport at the LaAlO$_{3}$/SrTiO$_{3}$ heterointerface

128   0   0.0 ( 0 )
 نشر من قبل Franklin Wong
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Using a combination of vertical transport measurements across and lateral transport measurements along the LaAlO$_{3}$/SrTiO$_{3}$ heterointerface, we demonstrate that significant potential barrier lowering and band bending are the cause of interfacial metallicity. Barrier lowering and enhanced band bending extends over 2.5 nm into LaAlO$_{3}$ as well as SrTiO$_{3}$. We explain origins of high-temperature carrier saturation, lower carrier concentration, and higher mobility in the sample with the thinnest LaAlO$_{3}$ film on a SrTiO$_{3}$ substrate. Lateral transport results suggest that parasitic interface scattering centers limit the low-temperature lateral electron mobility of the metallic channel.



قيم البحث

اقرأ أيضاً

By combined top- and backgating, we explore the correlation of superconductivity with band filling and electron confinement at the LaAlO$_3$-SrTiO$_3$ interface. We find that the top- and backgate voltages have distinctly different effects on the sup erconducting critical temperature, implying that the confining potential well has a profound effect on superconductivity. We investigate the origin of this behavior by comparing the gate-dependence of $T_c$ to the corresponding evolution of the band filling with gate voltage. For several backgate voltages, we observe maximum $T_c$ to consistently coincide with a kink in tuning the band filling for high topgate voltage. Self-consistent Schrodinger-Poisson calculations relate this kink to a Lifshitz transition of the second $d_{xy}$ subband. These results establish a major role for confinement-induced subbands in the phase diagram of SrTiO$_3$ surface states, and establish gating as a means to control the relative energy of these states.
Electrical transport of a polar heterointerface between two insulating perovskites, KTaO3 and SrTiO3, is studied. It is formed between a thin KTaO3 film deposited on a top of TiO2- terminated (100) SrTiO3 substrate. The resulting (KO)1-(TiO2)0 hetero interface is expected to be hole-doped according to formal valences of K (1+) and Ti (4+). We observed electrical conductivity and mobility in the KTaO3/SrTiO3 similar to values measured earlier in electron-doped LaAlO3/SrTiO3 heterointerfaces. However, the sign of the charge carriers in KTaO3/SrTiO3 obtained from the Hall measurements is negative. The result is an important clue to the true origin of the doping at perovskite oxide hetero-interfaces.
The ability to control materials properties through interface engineering is demonstrated by the appearance of conductivity at the interface of certain insulators, most famously the {001} interface of the band insulators LaAlO$_{3}$ and TiO$_{2}$-ter minated SrTiO$_{3}$ (STO). Transport and other measurements in this system show a plethora of diverse physical phenomena. To better understand the interface conductivity, we used scanning superconducting quantum interference device microscopy to image the magnetic field locally generated by current in an interface. At low temperature, we found that the current flowed in conductive narrow paths oriented along the crystallographic axes, embedded in a less conductive background. The configuration of these paths changed on thermal cycling above the STO cubic-to-tetragonal structural transition temperature, implying that the local conductivity is strongly modified by the STO tetragonal domain structure. The interplay between substrate domains and the interface provides an additional mechanism for understanding and controlling the behaviour of heterostructures.
We have studied the electronic structure at the heterointerface between the band insulators LaAlO$_3$ and SrTiO$_3$ using $in situ$ photoemission spectroscopy. Our experimental results clearly reveal the formation of a notched structure on the SrTiO$ _3$ side due to band bending at the metallic LaAlO$_3$/TiO$_2$-SrTiO$_3$ interface. The structure, however, is absent at the insulating LaAlO$_3$/SrO-SrTiO$_3$ interface. The present results indicate that the metallic states originate not from the charge transfer through the interface on a short-range scale but from the accumulation of carriers on a long-range scale.
The time-resolved photoconductance of amorphous and crystalline LaAlO$_3$/SrTiO$_3$ interfaces, both hosting an interfacial 2-dimensional electron gas, is investigated under irradiation by variable-wavelengths, visible or ultraviolet photons. Unlike bare SrTiO$_3$ single crystals, showing relatively small photoconductance effects, both kinds of interfaces exhibit an intense and highly persistent photoconductance with extraordinarily long characteristic times. The temporal behaviour of the extra photoinduced conductance persisting after light irradiation shows a complex dependence on interface type (whether amorphous or crystalline), sample history and irradiation wavelength. textcolor{black}{The experimental results indicate that different mechanisms of photoexcitation are responsible for the photoconductance of crystalline and amorphous LaAlO$_3$/SrTiO$_3$ interfaces under visible light. We propose that the response of crystalline samples is mainly due to the promotion of electrons from the valence bands of both SrTiO$_3$ and LaAlO$_3$. This second channel is less relevant in amorphous LaAlO$_3$/SrTiO$_3$, where the higher density of point defects plays instead a major role.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا