ترغب بنشر مسار تعليمي؟ اضغط هنا

Continuous variable entanglement distillation of Non-Gaussian Mixed States

130   0   0.0 ( 0 )
 نشر من قبل Ruifang Dong
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Many different quantum information communication protocols such as teleportation, dense coding and entanglement based quantum key distribution are based on the faithful transmission of entanglement between distant location in an optical network. The distribution of entanglement in such a network is however hampered by loss and noise that is inherent in all practical quantum channels. Thus, to enable faithful transmission one must resort to the protocol of entanglement distillation. In this paper we present a detailed theoretical analysis and an experimental realization of continuous variable entanglement distillation in a channel that is inflicted by different kinds of non-Gaussian noise. The continuous variable entangled states are generated by exploiting the third order non-linearity in optical fibers, and the states are sent through a free-space laboratory channel in which the losses are altered to simulate a free-space atmospheric channel with varying losses. We use linear optical components, homodyne measurements and classical communication to distill the entanglement, and we find that by using this method the entanglement can be probabilistically increased for some specific non-Gaussian noise channels.



قيم البحث

اقرأ أيضاً

We study a class of mixed non-Gaussian entangled states that, whilst closely related to Gaussian entangled states, none-the-less exhibit distinct properties previously only associated with more exotic, pure non-Gaussian states.
Entanglement distillation is an essential ingredient for long distance quantum communications. In the continuous variable setting, Gaussian states play major roles in quantum teleportation, quantum cloning and quantum cryptography. However, entanglem ent distillation from Gaussian states has not yet been demonstrated. It is made difficult by the no-go theorem stating that no Gaussian operation can distill Gaussian states. Here we demonstrate the entanglement distillation from Gaussian states by using measurement-induced non-Gaussian operations, circumventing the fundamental restriction of the no-go theorem. We observed a gain of entanglement as a result of conditional local subtraction of a single photon or two photons from a two-mode Gaussian state. Furthermore we confirmed that two-photon subtraction also improves Gaussian-like entanglement as specified by the Einstein-Podolsky-Rosen (EPR) correlation. This distilled entanglement can be further employed to downstream applications such as high fidelity quantum teleportation and a loophole-free Bell test.
We study nonclassical correlations beyond entanglement in a family of two-mode non-Gaussian states which represent the continuous-variable counterpart of two-qubit Werner states. We evaluate quantum discord and other quantumness measures obtaining ex act analytical results in special instances, and upper and lower bounds in the general case. Non-Gaussian measurements such as photon counting are in general necessary to solve the optimization in the definition of quantum discord, whereas Gaussian measurements are strictly suboptimal for the considered states. The gap between Gaussian and optimal non-Gaussian conditional entropy is found to be proportional to a measure of non-Gaussianity in the regime of low squeezing, for a subclass of continuous-variable Werner states. We further study an example of a non-Gaussian state which is positive under partial transposition, and whose nonclassical correlations stay finite and small even for infinite squeezing. Our results pave the way to a systematic exploration of the interplay between nonclassicality and non-Gaussianity in continuous-variable systems, in order to gain a deeper understanding of -and to draw a bigger advantage from- these two important resources for quantum technology.
We have recently shown that the output field in the Braunstein-Kimble protocol of teleportation is a superposition of two fields: the input one and a field created by Alices measurement and by displacement of the state at Bobs station by using the cl assical information provided by Alice. We study here the noise added by teleportation and compare its influence in the Gaussian and non-Gaussian settings.
198 - Jaehak Lee , Hyunchul Nha 2013
We study the task of distilling entanglement by a coherent superposition operation $that{a}+rhat{a}^dagger$ applied to a continuous-variable state under a thermal noise. In particular, we compare the performances of two different strategies, i.e., th e non-Gaussian operation $that{a}+rhat{a}^dagger$ is applied before or after the noisy Gaussian channel. This is closely related to a fundamental problem of whether Gaussian or non-Gaussian entanglement can be more robust under a noisy channel and also provides a useful insight into the practical implementation of entanglement distribution for a long-distance quantum communication. We specifically look into two entanglement characteristics, the logarithmic negativity as a measure of entanglement and the teleportation fidelity as a usefulness of entanglement, for each distilled state. We find that the non-Gaussian operation after (before) the thermal noise becomes more effective in the low (high) temperature regime.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا