ترغب بنشر مسار تعليمي؟ اضغط هنا

Faraday rotation of the supernova remnant G296.5+10.0: Evidence for a Magnetized Progenitor Wind

250   0   0.0 ( 0 )
 نشر من قبل Lisa Harvey-Smith
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present spectropolarimetric radio images of the supernova remnant (SNR) G296.5+10.0 at frequencies near 1.4 GHz, observed with the Australia Telescope Compact Array. By applying rotation measure (RM) synthesis to the data, a pixel-by-pixel map of Faraday rotation has been produced for the entire remnant. We find G296.5+10.0 to have a highly ordered RM structure, with mainly positive RMs (mean RM of +28 rad/m**2) on the eastern side and negative RMs (mean RM of -14 rad/m**2) on the western side, indicating a magnetic field which is directed away from us on one side and toward us on the other. We consider several possible mechanisms for creating the observed RM pattern. Neither Faraday rotation in foreground interstellar gas nor in a homogeneous ambient medium swept up by the SNR shell can easily explain the magnitude and sign of the observed RM pattern. Instead, we propose that the observed RMs are the imprint of an azimuthal magnetic field in the stellar wind of the progenitor star. Specifically, we calculate that a swept-up magnetized wind from a red supergiant can produce RMs of the observed magnitude, while the azimuthal pattern of the magnetic field at large distances from the star naturally produces the anti-symmetric RM pattern observed. Expansion into such a wind can possibly also account for the striking bilateral symmetry of the SNRs radio and X-ray morphologies.



قيم البحث

اقرأ أيضاً

Radio continuum emission from the supernova remnant G296.5+10.0 was observed using the Australia Telescope Compact Array. Using a 104 MHz bandwidth split into 13 x 8 MHz spectral channels, it was possible to produce a pixel-by-pixel image of Rotation Measure (RM) across the entire remnant. A lack of correlation between RM and X-ray surface brightness reveals that the RMs originate from outside the remnant. Using this information, we will characterise the smooth component of the magnetic field within the supernova remnant and attempt to probe the magneto-ionic structure and turbulent scale sizes in the ISM and galactic halo along the line-of-sight.
The explosive origin of the young supernova remnant (SNR) 3C 397 (G41.1-0.3) is debated. Its elongated morphology and proximity to a molecular cloud are suggestive of a core-collapse (CC) SN origin, yet recent X-ray studies of heavy metals show chemi cal yields and line centroid energies consistent with a Type Ia SN. In this paper, we analyze the full X-ray spectrum from 0.7-10 keV of 3C 397 observed with Suzaku and compare the line centroid energies, fluxes, and elemental abundances of intermediate-mass and heavy metals (Mg to Ni) to Type Ia and CC hydrodynamical model predictions. Based on the results, we conclude that 3C 397 likely arises from an energetic Type Ia explosion in a high-density ambient medium, and we show that the progenitor was a near Chandrasekhar mass white dwarf.
229 - B. M. Gaensler 1999
The interaction between the ejecta from Supernova 1987A and surrounding material is producing steadily brightening radio and X-ray emission. The new-born supernova remnant has been significantly decelerated by this interaction, while its morphology r eflects the axisymmetric nature of the progenitor wind.
Using HST photometry, we age-date 59 supernova remnants (SNRs) in the spiral galaxy M31 and use these ages to estimate zero-age main sequence masses (MZAMS) for their progenitors. To accomplish this, we create color-magnitude diagrams (CMDs) and use CMD fitting to measure the recent star formation history (SFH) of the regions surrounding cataloged SNR sites. We identify any young coeval population that likely produced the progenitor star and assign an age and uncertainty to that population. Application of stellar evolution models allows us to infer the MZAMS from this age. Because our technique is not contingent on precise location of the progenitor star, it can be applied to the location of any known SNR. We identify significant young SF around 53 of the 59 SNRs and assign progenitor masses to these, representing a factor of 2 increase over currently measured progenitor masses. We consider the remaining 6 SNRs as either probable Type Ia candidates or the result of core-collapse progenitors that have escaped their birth sites. The distribution of recovered progenitor masses is bottom heavy, showing a paucity of the most massive stars. If we assume a single power law distribution, dN/dM proportional to M^alpha, we find a distribution that is steeper than a Salpeter IMF (alpha=-2.35). In particular, we find values of alpha outside the range -2.7 to -4.4 inconsistent with our measured distribution at 95% confidence. If instead we assume a distribution that follows a Salpeter IMF up to some maximum mass, we find that values of M_max greater than 26 Msun are inconsistent with the measured distribution at 95% confidence. In either scenario, the data suggest that some fraction of massive stars may not explode. The result is preliminary and requires more SNRs and further analysis. In addition, we use our distribution to estimate a minimum mass for core collapse between 7.0 and 7.8 Msun.
We present a polarimetric study of the pulsar wind nebula (PWN) in supernova remnant G21.5$-$0.9 using archival Very Large Array (VLA) data. The rotation measure (RM) map of the PWN shows a symmetric pattern that aligns with the presumed pulsar spin axis direction, implying a significant contribution of RM from the nebula. We suggest that the spatial variation of the internal RM is mostly caused by non-uniform distribution of electrons originated from the supernova ejecta. Our high-resolution radio polarization map reveals an overall radial $B$-field. We construct a simple model with an overall radial $B$-field and turbulence in small scale. The model can reproduce many of the observed features of the PWN, including the polarization pattern and polarized fraction. The results also reject a large-scale toroidal $B$-field which implies that the toroidal field observed in the inner PWN cannot propagate to the entire nebula.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا