ﻻ يوجد ملخص باللغة العربية
Using HST photometry, we age-date 59 supernova remnants (SNRs) in the spiral galaxy M31 and use these ages to estimate zero-age main sequence masses (MZAMS) for their progenitors. To accomplish this, we create color-magnitude diagrams (CMDs) and use CMD fitting to measure the recent star formation history (SFH) of the regions surrounding cataloged SNR sites. We identify any young coeval population that likely produced the progenitor star and assign an age and uncertainty to that population. Application of stellar evolution models allows us to infer the MZAMS from this age. Because our technique is not contingent on precise location of the progenitor star, it can be applied to the location of any known SNR. We identify significant young SF around 53 of the 59 SNRs and assign progenitor masses to these, representing a factor of 2 increase over currently measured progenitor masses. We consider the remaining 6 SNRs as either probable Type Ia candidates or the result of core-collapse progenitors that have escaped their birth sites. The distribution of recovered progenitor masses is bottom heavy, showing a paucity of the most massive stars. If we assume a single power law distribution, dN/dM proportional to M^alpha, we find a distribution that is steeper than a Salpeter IMF (alpha=-2.35). In particular, we find values of alpha outside the range -2.7 to -4.4 inconsistent with our measured distribution at 95% confidence. If instead we assume a distribution that follows a Salpeter IMF up to some maximum mass, we find that values of M_max greater than 26 Msun are inconsistent with the measured distribution at 95% confidence. In either scenario, the data suggest that some fraction of massive stars may not explode. The result is preliminary and requires more SNRs and further analysis. In addition, we use our distribution to estimate a minimum mass for core collapse between 7.0 and 7.8 Msun.
We constrained the progenitor masses for 169 supernova remnants, 8 historically observed supernovae, and the black hole formation candidate in NGC 6946, finding that they are consistent with originating from a standard initial mass function. Addition
We determine the ages of the young, resolved stellar populations at the locations of 237 optically-identified supernova remnants in M83. These age distributions put constraints on the progenitor masses of the supernovae that produced 199 of the remna
We present a model for the Galactic supernova remnant (SNR) VRO 42.05.01, suggesting that its intriguing morphology can be explained by a progenitor model of a supersonically moving, mass losing star. The mass outflows of the progenitor star were in
We age-date the stellar populations associated with 12 historic nearby core-collapse supernovae (CCSNe) and 2 supernova impostors, and from these ages, we infer their initial masses and associated uncertainties. To do this, we have obtained new HST i
The interaction between the ejecta from Supernova 1987A and surrounding material is producing steadily brightening radio and X-ray emission. The new-born supernova remnant has been significantly decelerated by this interaction, while its morphology r