ترغب بنشر مسار تعليمي؟ اضغط هنا

AC transport properties of single and bilayer graphene

105   0   0.0 ( 0 )
 نشر من قبل U. Zuelicke
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We have performed a theoretical study of electronic transport in single and bilayer graphene based on the standard linear-response (Kubo) formalism and continuum-model descriptions of the graphene band structure. We are focusing especially on the interband contribution to the optical conductivity. Analytical results are obtained for a variety of situations, which allow clear identification of features in the conductivity that are associated with relevant electronic energy scales. Our work extends previous numerical studies and elucidates ways to infer electronic properties of graphene samples from optical-conductivity measurements.



قيم البحث

اقرأ أيضاً

138 - Dingran Rui , Luzhao Sun , N. Kang 2020
We report on low-temperature transport study of a single layer graphene (SLG)-twisted bilayer graphene (tBLG) junction device. The SLG-tBLG junction in the device is grown by chemical vapor deposition and the device is fabricated in a Hall-bar config uration on Si/SiO$_2$ substrate. The longitudinal resistances across the SLG-tBLG junction (cross-junction resistances) on the two sides of the Hall bar and the Hall resistances of SLG and tBLG in the device are measured. In the quantum Hall regime, the measurements show that the measured cross-junction resistances exhibit a series of new quantized plateaus and the appearance of these resistance plateaus can be attributed to the presence of the well-defined edge-channel transport along the SLG-tBLG junction interface. The measurements also show that the difference between the cross-junction resistances measured on the two sides of the Hall-bar provides a sensitive measure to the edge channel transport characteristics in the two graphene layers that constitute the SLG-tBLG junction and to degeneracy lifting of the Landau levels in the tBLG layer. Temperature dependent measurements of the cross-junction resistance in the quantum Hall regime are also carried out and the influence of the transverse transport of the bulk Landau levels on the edge channel transport along the SLG-tBLG junction interface are extracted. These results enrich the understanding of the charge transport across interfaces in graphene hybrid structures and open up new opportunities for probing exotic quantum phenomena in graphene devices.
A Drude-Boltzmann theory is used to calculate the transport properties of bilayer graphene. We find that for typical carrier densities accessible in graphene experiments, the dominant scattering mechanism is overscreened Coulomb impurities that behav e like short-range scatterers. We anticipate that the conductivity $sigma(n)$ is linear in $n$ at high density and has a plateau at low density corresponding to a residual density of $n^* = sqrt{n_{rm imp} {tilde n}}$, where ${tilde n}$ is a constant which we estimate using a self-consistent Thomas-Fermi screening approximation to be ${tilde n} approx 0.01 ~q_{rm TF}^2 approx 140 times 10^{10} {rm cm}^{-2}$. Analytic results are derived for the conductivity as a function of the charged impurity density. We also comment on the temperature dependence of the bilayer conductivity.
The magneto-transport properties of phosphorene are investigated by employing the generalized tight-binding model to calculate the energy bands. For bilayer phosphorene, a composite magnetic and electric field is shown to induce a feature-rich Landau level (LL) spectrum which includes two subgroups of low-lying LLs. The two subgroups possess distinct features in level spacings, quantum numbers, as well as field dependencies. These together lead to anomalous quantum Hall (QH) conductivities which include a well-shape, staircase and composite quantum structures with steps having varying heights and widths. The Fermi energy-magnetic field-Hall conductivity ($E_{F}-B_{z}-sigma_{xy}$) and Fermi energy-electric field-Hall conductivity ($E_{F}-E_{z}-sigma_{xy}$) phase diagrams clearly exhibit oscillatory behaviors and cross-over from integer to half-integer QH effect. The predicted results should be verifiable by magneto-transport measurements in a dual-gated system.
We study, within the tight-binding approximation, the electronic properties of a graphene bilayer in the presence of an external electric field applied perpendicular to the system -- emph{biased bilayer}. The effect of the perpendicular electric fiel d is included through a parallel plate capacitor model, with screening correction at the Hartree level. The full tight-binding description is compared with its 4-band and 2-band continuum approximations, and the 4-band model is shown to be always a suitable approximation for the conditions realized in experiments. The model is applied to real biased bilayer devices, either made out of SiC or exfoliated graphene, and good agreement with experimental results is found, indicating that the model is capturing the key ingredients, and that a finite gap is effectively being controlled externally. Analysis of experimental results regarding the electrical noise and cyclotron resonance further suggests that the model can be seen as a good starting point to understand the electronic properties of graphene bilayer. Also, we study the effect of electron-hole asymmetry terms, as the second-nearest-neighbor hopping energies $t$ (in-plane) and $gamma_{4}$ (inter-layer), and the on-site energy $Delta$.
We numerically investigate the electronic transport properties between two mesoscopic graphene disks with a twist by employing the density functional theory coupled with non-equilibrium Greens function technique. By attaching two graphene leads to up per and lower graphene layers separately, we explore systematically the dependence of electronic transport on the twist angle, Fermi energy, system size, layer stacking order and twist axis. When choose different twist axes for either AA- or AB-stacked bilayer graphene, we find that the dependence of conductance on twist angle displays qualitatively distinction, i.e., the systems with top axis exhibit finite conductance oscillating as a function of the twist angle, while the ones with hollow axis exhibit nearly vanishing conductance for different twist angles or Fermi energies near the charge neutrality point. These findings suggest that the choice of twist axis can effectively tune the interlayer conductance, making it a crucial factor in designing of nanodevices with the twisted van der Waals multilayers.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا