ﻻ يوجد ملخص باللغة العربية
We report on low-temperature transport study of a single layer graphene (SLG)-twisted bilayer graphene (tBLG) junction device. The SLG-tBLG junction in the device is grown by chemical vapor deposition and the device is fabricated in a Hall-bar configuration on Si/SiO$_2$ substrate. The longitudinal resistances across the SLG-tBLG junction (cross-junction resistances) on the two sides of the Hall bar and the Hall resistances of SLG and tBLG in the device are measured. In the quantum Hall regime, the measurements show that the measured cross-junction resistances exhibit a series of new quantized plateaus and the appearance of these resistance plateaus can be attributed to the presence of the well-defined edge-channel transport along the SLG-tBLG junction interface. The measurements also show that the difference between the cross-junction resistances measured on the two sides of the Hall-bar provides a sensitive measure to the edge channel transport characteristics in the two graphene layers that constitute the SLG-tBLG junction and to degeneracy lifting of the Landau levels in the tBLG layer. Temperature dependent measurements of the cross-junction resistance in the quantum Hall regime are also carried out and the influence of the transverse transport of the bulk Landau levels on the edge channel transport along the SLG-tBLG junction interface are extracted. These results enrich the understanding of the charge transport across interfaces in graphene hybrid structures and open up new opportunities for probing exotic quantum phenomena in graphene devices.
We employ dual-gated 30{deg}-twisted bilayer graphene to demonstrate simultaneous ultra-high mobility and conductivity (up to 40 mS at room temperature), unattainable in a single-layer of graphene. We find quantitative agreement with a simple phenome
When two planar atomic membranes are placed within the van der Waals distance, the charge and heat transport across the interface are coupled by the rules of momentum conservation and structural commensurability, leading to outstanding thermoelectric
We numerically investigate the electronic transport properties between two mesoscopic graphene disks with a twist by employing the density functional theory coupled with non-equilibrium Greens function technique. By attaching two graphene leads to up
We study conductance across a twisted bilayer graphene coupled to single-layer graphene leads in two setups: a flake of graphene on top of an infinite graphene ribbon and two overlapping semi-infinite graphene ribbons. We find conductance strongly de
Control over minivalley polarization and interlayer coupling is demonstrated in double bilayer graphene twisted with an angle of 2.37$^circ$. This intermediate angle is small enough for the minibands to form and large enough such that the charge carr