ﻻ يوجد ملخص باللغة العربية
A rigorous quantum theory of atomic collisions in the presence of radio frequency (rf) magnetic fields is developed and applied to elucidate the effects of combined dc and rf magnetic fields on elastic scattering in ultracold collisions of Rb atoms. We show that rf fields can be used to induce Feshbach resonances, which can be tuned by varying the amplitude and frequency of the rf field. The rf-induced Feshbach resonances occur also in collisions of atoms in low-field-seeking states at moderate rf field strengths easily available in atom chip experiments, which opens up the world of tunable interactions to magnetically trappable atomic quantum gases.
Decay of bound states due to coupling with free particle states is a general phenomenon occurring at energy scales from MeV in nuclear physics to peV in ultracold atomic gases. Such a coupling gives rise to Fano-Feshbach resonances (FFR) that have be
The electromagnetically induced transparency (EIT) phenomenon has been investigated in a $Lambda$-system of the $^{87}$Rb D$_1$ line in an external transverse magnetic field. Two spectroscopic cells having strongly different values of the relaxation
We study the use of an optical Feshbach resonance to modify the p-wave interaction between ultracold polarized Yb-171 spin-1/2 fermions. A laser exciting two colliding atoms to the 1S_0 + 3P_1 channel can be detuned near a purely-long-range excited m
We investigate magnetically tunable Feshbach resonances in ultracold collisions between ground-state Yb and Cs atoms, using coupled-channel calculations based on an interaction potential recently determined from photoassociation spectroscopy. We pred
We propose and experimentally investigate a scheme for observing Feshbach resonances in atomic quantum gases in situ and with a high temporal resolution of several ten nanoseconds. The method is based on the detection of molecular ions, which are opt