ترغب بنشر مسار تعليمي؟ اضغط هنا

Fast in situ observation of atomic Feshbach resonances by photoassociative ionization

365   0   0.0 ( 0 )
 نشر من قبل Max Eisele
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We propose and experimentally investigate a scheme for observing Feshbach resonances in atomic quantum gases in situ and with a high temporal resolution of several ten nanoseconds. The method is based on the detection of molecular ions, which are optically generated from atom pairs at small interatomic distances. As test system we use a standard rubidium gas (87Rb) with well known magnetically tunable Feshbach resonances. The fast speed and the high sensitivity of our detection scheme allows to observe a complete Feshbach resonance within one millisecond and without destroying the gas.



قيم البحث

اقرأ أيضاً

We have observed three Feshbach resonances in collisions between lithium-6 and sodium-23 atoms. The resonances were identified as narrow loss features when the magnetic field was varied. The molecular states causing these resonances have been identif ied, and additional lithium-sodium resonances are predicted. These resonances will allow the study of degenerate Bose-Fermi mixtures with adjustable interactions, and could be used to generate ultracold heteronuclear molecules.
Motivated by recent interest in low dimensional arrays of atoms, we experimentally investigated the way cold collisional processes are affected by the geometry of the considered atomic sample. More specifically, we studied the case of photoassociativ e ionization (PAI) both in a storage ring where collision is more unidirectional in character and in a trap with clear undefinition of collision axis. First, creating a ring shaped trap (atomotron) we investigated two-color PAI dependence with intensity and polarization of a probing laser. The intensity dependence of the PAI rate was also measured in a magneto-optical trap presenting equivalent temperature and density conditions. Indeed, the results show that in the ring trap, the value of the PAI rate constant is much lower and does not show evidences of saturation, unlike in the case of the 3D-MOT. Cold atomic collisions in storage ring may represent new possibilities for study.
Observation of molecular dynamics with quantum state resolution is one of the major challenges in chemical physics. Complete characterization of collision dynamics leads to the microscopic understanding and unraveling of different quantum phenomena s uch as scattering resonances. We present a new experimental approach for observing molecular dynamics involving neutral particles and ions that is capable in providing state-to-state mapping of the dynamics. We use Penning ionization reaction between argon and metastable helium to generate argon ion and ground state helium atom pairs at separation of several angstroms. The energy of ejected electron carries the information about the initial electronic state of an ion. The coincidence detection of ionic products provides a state resolved description of the post-ionization ion-neutral dynamics. We demonstrate that correlation between the electron and ion energy spectra enables us to directly observe the spin-orbit excited Feshbach resonance state of HeAr$^+$. We measure the lifetime of the quasi-bound HeAr$^+$ A$_2$ state and discuss possible applications of our method.
Controlling physical systems and their dynamics on the level of individual quanta propels both fundamental science and quantum technologies. Trapped atomic and molecular systems, neutral and charged, are at the forefront of quantum science. Their ext raordinary level of control is evidenced by numerous applications in quantum information processing and quantum metrology. Studying the long-range interactions between these systems when combined in a hybrid atom-ion trap has lead to landmark results. Reaching the ultracold regime, however, where quantum mechanics dominates the interaction, e.g., giving access to controllable scattering resonances, has been elusive so far. Here we demonstrate Feshbach resonances between ions and atoms, using magnetically tunable interactions between $^{138}$Ba$^{+}$ ions and $^{6}$Li atoms. We tune the experimental parameters to probe different interaction processes - first, enhancing three-body reactions and the related losses to identify the resonances, then making two-body interactions dominant to investigate the ions sympathetic cooling in the ultracold atomic bath. Our results provide deeper insights into atom-ion interactions, giving access to complex many-body systems and applications in experimental quantum simulation.
Decay of bound states due to coupling with free particle states is a general phenomenon occurring at energy scales from MeV in nuclear physics to peV in ultracold atomic gases. Such a coupling gives rise to Fano-Feshbach resonances (FFR) that have be come key to understanding and controlling interactions - in ultracold atomic gases, but also between quasiparticles such as microcavity polaritons. The energy positions of FFR were shown to follow quantum chaotic statistics. In contrast, lifetimes which are the fundamental property of a decaying state, have so far escaped a similarly comprehensive understanding. Here we show that a bound state, despite being resonantly coupled to a scattering state, becomes protected from decay whenever the relative phase is a multiple of $pi$. We observe this phenomenon by measuring lifetimes spanning four orders of magnitude for FFR of spin-orbit excited molecular ions with merged beam and electrostatic trap experiments. Our results provide a blueprint for identifying naturally long-lived states in a decaying quantum system.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا