ﻻ يوجد ملخص باللغة العربية
A dual-gate graphene field-effect transistors is presented, which shows improved RF performance by reducing the access resistance using electrostatic doping. With a carrier mobility of 2700 cm2/Vs, a cutoff frequency of 50 GHz is demonstrated in a 350-nm gate length device. This fT value is the highest frequency reported to date for any graphene transistor, and it also exceeds that of Si MOSFETs at the same gate length, illustrating the potential of graphene for RF applications.
The electronic states at graphene-SiO$_2$ interface and their inhomogeneity was investigated using the back-gate-voltage dependence of local tunnel spectra acquired with a scanning tunneling microscope. The conductance spectra show two, or occasional
This letter reports the impact of surface morphology on the carrier transport and RF performance of graphene FETs formed on epitaxial graphene films synthesized on SiC substrates. Such graphene exhibits long terrace structures with widths between 3-5
We study instability of plasmons in a dual-grating-gate graphene field-effect transistor induced by dc current injection using self-consistent simulations with the Boltzmann equation. With only the acoustic-phonon-limited electron scattering, it is d
We describe a simple and scalable method for the transfer of CVD graphene for the fabrication of field effect transistors. This is a dry process that uses a modified RCA cleaning step to improve the surface quality. In contrast to conventional fabric
Van der Waals heterostrucutures allow for novel devices such as two-dimensional-to-two-dimensional tunnel devices, exemplified by interlayer tunnel FETs. These devices employ channel/tunnel-barrier/channel geometries. However, during layer-by-layer e